For the first time,two-dimensional FeOCl(Fe_(1-x)Co_(x)OCl)doped with Co was successfully applied to the photocatalytic and photo-Fenton degradation of Rhodamine B(RhB).The photocatalytic and photo-Fenton experiments ...For the first time,two-dimensional FeOCl(Fe_(1-x)Co_(x)OCl)doped with Co was successfully applied to the photocatalytic and photo-Fenton degradation of Rhodamine B(RhB).The photocatalytic and photo-Fenton experiments showed that the degradation rates of RhB by Fe0.94Co0.06OCl are 82.6%and 98.2%within 50 min under neutral solution,room temperature and visible light.The inclusion of Co resulted in lattice imperfections on the surface of Fe OCl,which was advantageous for the photogenerated electron-hole pair separation efficiency(consistent with the density functional theory calculation).Moreover,the RhB removal rate decreased from 98%to 82%during five successive cycles,showing good structural stability.Finally,based on the radical capture experiment,a potential mechanism for RhB degradation by Fe_(1-x)Co_(x)OCl catalyst was proposed.The idea of a synergistic mechanism for Fe_(1-x)Co_(x)OCl also offers a fresh concept for catalysts used in doping modification.展开更多
基金the National Natural Science Foundation of China(Grant No.52268042)the Natural Science Foundation of Gansu Province+1 种基金China(Grant No.22JR5RA253)HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology。
文摘For the first time,two-dimensional FeOCl(Fe_(1-x)Co_(x)OCl)doped with Co was successfully applied to the photocatalytic and photo-Fenton degradation of Rhodamine B(RhB).The photocatalytic and photo-Fenton experiments showed that the degradation rates of RhB by Fe0.94Co0.06OCl are 82.6%and 98.2%within 50 min under neutral solution,room temperature and visible light.The inclusion of Co resulted in lattice imperfections on the surface of Fe OCl,which was advantageous for the photogenerated electron-hole pair separation efficiency(consistent with the density functional theory calculation).Moreover,the RhB removal rate decreased from 98%to 82%during five successive cycles,showing good structural stability.Finally,based on the radical capture experiment,a potential mechanism for RhB degradation by Fe_(1-x)Co_(x)OCl catalyst was proposed.The idea of a synergistic mechanism for Fe_(1-x)Co_(x)OCl also offers a fresh concept for catalysts used in doping modification.