While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ...While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375 and 62006106)the Zhejiang Provincial Philosophy and Social Science Planning Project(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant Nos.19YJCZH056 and 21YJC630120)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY23F030003 and LQ21F020005).
文摘While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.
基金浙江师范大学2018校级重点教改项目“面向工程教育认证的计算机网络课程混合式教学模式改革与探索”浙江师范大学2020年校级教学改革项目“Software Quality Assurance and Testing网络教学开发”“软件工程国际化专业Software Quality Assurance and Testing课堂教学改革”。