期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MSFA-Net的车辆及车道线检测算法
1
作者
文斌
丁
弈
夫
+2 位作者
胡一鸣
彭顺
胡晖
《汽车安全与节能学报》
CAS
CSCD
北大核心
2024年第3期433-442,共10页
车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-E...
车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-ELAN网络构造共享主干特征网络;在车辆检测分支网络设计增强卷积模块(CBS+)进行自下而上的特征融合以提升精度;在车道线检测分支网络使用特征融合模块(FeatFuse)对多分辨率特征进行自适应加权融合,配合空洞卷积语义感知模块(CDBS)使用梯形结构的多空洞值卷积对融合特征进行采样,以提升不连续车道线及其他非线性车道的分割精度。结果表明:在BDD100K数据集上,该文网络MSFA-Net其平均精度均值、召回率、像素准确率分别达到了81.3%、90.1%和80.1%,检测帧率达到了41.6帧/s,能较好适应真实行车环境的需求。
展开更多
关键词
车辆检测
交通图像
深度学习
车道线分割
双任务多尺度特征聚合网络(MSFA-Net)
下载PDF
职称材料
题名
基于MSFA-Net的车辆及车道线检测算法
1
作者
文斌
丁
弈
夫
胡一鸣
彭顺
胡晖
机构
三峡大学湖北省输电线路工程技术研究中心
三峡大学电气与新能源学院
出处
《汽车安全与节能学报》
CAS
CSCD
北大核心
2024年第3期433-442,共10页
基金
国家自然科学基金资助项目(62273200,61876097)
湖北省输电线路工程技术研究中心研究基金资助项目(2022KXL03)
湖北省自然科学基金联合基金类项目(2024AFD409)。
文摘
车辆检测与车道线分割是自动驾驶感知系统的重要组成部分,其基本要求是具有高精度和实时性。鉴此提出一种双任务多尺度特征聚合网络(MSFA-Net),该网络由1个特征提取网络和2个检测分支网络构成,实现了车辆和车道线同时检测。首先使用E-ELAN网络构造共享主干特征网络;在车辆检测分支网络设计增强卷积模块(CBS+)进行自下而上的特征融合以提升精度;在车道线检测分支网络使用特征融合模块(FeatFuse)对多分辨率特征进行自适应加权融合,配合空洞卷积语义感知模块(CDBS)使用梯形结构的多空洞值卷积对融合特征进行采样,以提升不连续车道线及其他非线性车道的分割精度。结果表明:在BDD100K数据集上,该文网络MSFA-Net其平均精度均值、召回率、像素准确率分别达到了81.3%、90.1%和80.1%,检测帧率达到了41.6帧/s,能较好适应真实行车环境的需求。
关键词
车辆检测
交通图像
深度学习
车道线分割
双任务多尺度特征聚合网络(MSFA-Net)
Keywords
vehicle detection
traffic image
deep learning
lane segmentation
dual task multi-scale feature aggregation network(MSFA-Net)
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MSFA-Net的车辆及车道线检测算法
文斌
丁
弈
夫
胡一鸣
彭顺
胡晖
《汽车安全与节能学报》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部