针对深度学习模型所需的海量参数及强大的计算资源而导致其不能很便捷地应用于嵌入式设备或移动端的问题,在Lasso(Least Absolute Shrinkage and Selection Operator)回归通道挑选法的基础上,提出了Lasso+奇异值分解(Singular Value Dec...针对深度学习模型所需的海量参数及强大的计算资源而导致其不能很便捷地应用于嵌入式设备或移动端的问题,在Lasso(Least Absolute Shrinkage and Selection Operator)回归通道挑选法的基础上,提出了Lasso+奇异值分解(Singular Value Decomposition,SVD)的融合压缩法。使用VGG-16为初始模型,分别在不同的小型数据集上进行迁移学习,使用迁移学习后的模型在不同的加速率下进行测试。实验结果表明,相对于传统的模型压缩算法,Lasso+SVD的融合压缩法实现了在加速和参数压缩两方面的优势,进而以目标检测为应用方向,在保证准确率的同时不仅降低了模型存储需求,而且也较大提升了模型的实时性。展开更多
文摘针对深度学习模型所需的海量参数及强大的计算资源而导致其不能很便捷地应用于嵌入式设备或移动端的问题,在Lasso(Least Absolute Shrinkage and Selection Operator)回归通道挑选法的基础上,提出了Lasso+奇异值分解(Singular Value Decomposition,SVD)的融合压缩法。使用VGG-16为初始模型,分别在不同的小型数据集上进行迁移学习,使用迁移学习后的模型在不同的加速率下进行测试。实验结果表明,相对于传统的模型压缩算法,Lasso+SVD的融合压缩法实现了在加速和参数压缩两方面的优势,进而以目标检测为应用方向,在保证准确率的同时不仅降低了模型存储需求,而且也较大提升了模型的实时性。