Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the d...Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.展开更多
The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of trans...The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS- associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to beinvolved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the Mprotein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides noevidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of otherpossible SARS-related pathogen(s).展开更多
19 颅内出血史
根据最初的 FDA 标签和2013年AHA/ASA指南,颅内出血史是静脉阿替普酶治疗缺血性卒中的一项额外禁忌证或排除标准。最近修订后的标签仅将近期 ICH 列为一项警告,并且在禁忌证中删除了ICH史。与前面讨论的静脉阿替普酶治...19 颅内出血史
根据最初的 FDA 标签和2013年AHA/ASA指南,颅内出血史是静脉阿替普酶治疗缺血性卒中的一项额外禁忌证或排除标准。最近修订后的标签仅将近期 ICH 列为一项警告,并且在禁忌证中删除了ICH史。与前面讨论的静脉阿替普酶治疗排除标准相似,文献回顾仅在大样本回顾性研究中发现了少量这类病例。缺乏相关数据可能是修订后的FDA 标签不再将 ICH 史作为禁忌证而仅将近期ICH 列为一项警告的原因。在这种情况下,FDA 如何定义“近期”一词尚不清楚。有趣的是,对在静脉阿替普酶治疗前通过 MRI 检测脑微出血( cerebral microbleed, CMBs)存在情况进行的研究可为这个卒中亚组患者提供更多的见解。从病理生理学角度,这种微出血的原因尚不清楚,可能反映再灌注损伤或脑血管自动调节功能破坏。因此,在静脉阿替普酶治疗后出现这些损害可能没有意义或是人为信号。展开更多
It is estimated that 20000 to 30000 new patients are diagnosed with osteonecrosis annually accounting for approximately 10% of the 250000 total hip arthroplasties done annually in the United States. Thelack of level 1...It is estimated that 20000 to 30000 new patients are diagnosed with osteonecrosis annually accounting for approximately 10% of the 250000 total hip arthroplasties done annually in the United States. Thelack of level 1 evidence in the literature makes it difficult to identify optimal treatment protocols to manage patients with pre-collapse avascular necrosis of the femoral head, and early intervention prior to collapse is critical to successful outcomes in joint preserving procedures. There have been a variety of traumatic and atraumatic factors that have been identified as risk factors for osteonecrosis, but the etiology and pathogenesis still remains unclear. Current osteonecrosis diagnosis is dependent upon plain anteroposterior and frog-leg lateral radiographs of the hip, followed by magnetic resonance imaging(MRI). Generally, the first radiographic changes seen by radiograph will be cystic and sclerotic changes in the femoral head. Although the diagnosis may be made by radiograph, plain radiographs are generally insufficient for early diagnosis, therefore MRI is considered the most accurate benchmark. Treatment options include pharmacologic agents such as bisphosphonates and statins, biophysical treatments, as well as joint-preserving and joint-replacing surgeries. the surgical treatment of osteonecrosis of the femoral head can be divided into two major branches: femoral head sparing procedures(FHSP) and femoral head replacement procedures(FHRP). In general, FHSP are indicated at pre-collapse stages with minimal symptoms whereas FHRP are preferred at post-collapse symptomatic stages. It is difficult to know whether any treatment modality changes the natural history of core decompression since the true natural history of core decompression has not been delineated.展开更多
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin...This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.展开更多
基金supported by NIH grants AR055915 and AR054465 to DC
文摘Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of pain and disability in adult individuals. The etiology of OA includes joint injury, obesity, aging, and heredity. However, the detailed molecular mechanisms of OA initiation and progression remain poorly understood and, currently, there are no interventions available to restore degraded cartilage or decelerate disease progression. The diathrodial joint is a complicated organ and its function is to bear weight, perform physical activity and exhibit a joint-specific range of motion during movement. During OA development, the entire joint organ is affected, including articular cartilage, subchondral bone, synovial tissue and meniscus. A full understanding of the pathological mechanism of OA development relies on the discovery of the interplaying mechanisms among different OA symptoms, including articular cartilage degradation, osteophyte formation, subchondral sclerosis and synovial hyperplasia, and the signaling pathway(s) controlling these pathological processes.
文摘The genome sequence of the Severe Acute Respiratory Syndrome (SARS)-associated virus provides essential information for the identification of pathogen(s), exploration of etiology and evolution, interpretation of transmission and pathogenesis, development of diagnostics, prevention by future vaccination, and treatment by developing new drugs. We report the complete genome sequence and comparative analysis of an isolate (BJ01) of the coronavirus that has been recognized as a pathogen for SARS. The genome is 29725 nt in size and has 11 ORFs (Open Reading Frames). It is composed of a stable region encoding an RNA-dependent RNA polymerase (composed of 2 ORFs) and a variable region representing 4 CDSs (coding sequences) for viral structural genes (the S, E, M, N proteins) and 5 PUPs (putative uncharacterized proteins). Its gene order is identical to that of other known coronaviruses. The sequence alignment with all known RNA viruses places this virus as a member in the family of Coronaviridae. Thirty putative substitutions have been identified by comparative analysis of the 5 SARS- associated virus genome sequences in GenBank. Fifteen of them lead to possible amino acid changes (non-synonymous mutations) in the proteins. Three amino acid changes, with predicted alteration of physical and chemical features, have been detected in the S protein that is postulated to beinvolved in the immunoreactions between the virus and its host. Two amino acid changes have been detected in the Mprotein, which could be related to viral envelope formation. Phylogenetic analysis suggests the possibility of non-human origin of the SARS-associated viruses but provides noevidence that they are man-made. Further efforts should focus on identifying the etiology of the SARS-associated virus and ruling out conclusively the existence of otherpossible SARS-related pathogen(s).
文摘It is estimated that 20000 to 30000 new patients are diagnosed with osteonecrosis annually accounting for approximately 10% of the 250000 total hip arthroplasties done annually in the United States. Thelack of level 1 evidence in the literature makes it difficult to identify optimal treatment protocols to manage patients with pre-collapse avascular necrosis of the femoral head, and early intervention prior to collapse is critical to successful outcomes in joint preserving procedures. There have been a variety of traumatic and atraumatic factors that have been identified as risk factors for osteonecrosis, but the etiology and pathogenesis still remains unclear. Current osteonecrosis diagnosis is dependent upon plain anteroposterior and frog-leg lateral radiographs of the hip, followed by magnetic resonance imaging(MRI). Generally, the first radiographic changes seen by radiograph will be cystic and sclerotic changes in the femoral head. Although the diagnosis may be made by radiograph, plain radiographs are generally insufficient for early diagnosis, therefore MRI is considered the most accurate benchmark. Treatment options include pharmacologic agents such as bisphosphonates and statins, biophysical treatments, as well as joint-preserving and joint-replacing surgeries. the surgical treatment of osteonecrosis of the femoral head can be divided into two major branches: femoral head sparing procedures(FHSP) and femoral head replacement procedures(FHRP). In general, FHSP are indicated at pre-collapse stages with minimal symptoms whereas FHRP are preferred at post-collapse symptomatic stages. It is difficult to know whether any treatment modality changes the natural history of core decompression since the true natural history of core decompression has not been delineated.
文摘This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.