The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenes...The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.展开更多
Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, e...Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.展开更多
Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots,"Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We re...Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots,"Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, sesamum indicum and Salvia splendens,revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scu-tellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its newfunc- tion following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionaliza-tions were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.展开更多
Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human dise...Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human diseases,including cardiovascular disease,diabetes,neurological degeneration,and cancer.Therefore,the growing emphasis on “healthy aging” raises a series of important questions in life and social sciences.In recent years,there has been unprecedented progress in aging research,particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes.In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases,we review the descriptive,conceptual,and interventive aspects of the landscape of aging composed of a number of layers at the cellular,tissue,organ,organ system,and organismal levels.展开更多
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecu...Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation(LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization,gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin-and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre-and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.展开更多
Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum...Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.展开更多
Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various r...Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks.In this review,we summarize the research progress of rice biology over past decades,including omics,genome-wide association study,phytohormone action,nutrient use,biotic and abiotic responses,photoperiodic flowering,and reproductive development(fertility and sterility).For the roads ahead,cutting-edge technologies such as new genomics methods,high-throughput phenotyping platforms,precise genome-editing tools,environmental microbiome optimization,and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice,and facilitate integrations of the knowledge for agricultural applications.展开更多
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommoda...Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis;skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.展开更多
Dear Editor,Since December 2019,the pandemic of coronavirus disease 2019(COVID-19)has taken a heavy toll on global health,creating an urgent need to develop effective strategies for prevention and treatment.The etiolo...Dear Editor,Since December 2019,the pandemic of coronavirus disease 2019(COVID-19)has taken a heavy toll on global health,creating an urgent need to develop effective strategies for prevention and treatment.The etiological agent,known as severe acute respiratory syndrome coronavirus 2(SARSCoV-2),has infected nearly 229.2 million people worldwide with more than 4.7 million deaths as of September 15,2021.Older age and preexisting health conditions are associated with worse clinical prognosis including higher mortality rates(Zhou et al.,2020).The global race to combat this pandemic has led to rapid deployment of numerous effective vaccines against SARS-CoV-2(Tregoning et al.,2021).However,the emergence of viral variants,including the Delta variant(B.1.617.2),compromised vaccine effectiveness with resurgence of SARS-CoV-2 infection among highly vaccinated population(Keehner et al.,2021).Therefore,development of therapeutics against the more conserved viral targets would be essential to contain the spread of COVID-19 and reduce mortality.展开更多
Mammalian mitochondria have small genomes encoding very limited numbers of proteins.Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria.H...Mammalian mitochondria have small genomes encoding very limited numbers of proteins.Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria.Here,we report the identification of hundreds of circular RNAs(mecciRNAs)encoded by the mitochondrial genome.We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate the mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins.Known components involved in mitochondrial protein and RNA importation,such as TOM40 and PNPASE,interact with mecciRNAs and regulate protein entry.The expression of mecciRNAs is regulated,and these transcripts are critical for the adaption of mitochondria to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation.mecciRNAs and their associated physiological roles add categories and functions to the known eukaryotic circular RNAs and shed novel light on the communication between mitochondria and the nucleus.展开更多
Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HC...Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c.myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocar- cinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.展开更多
Legumes,unlike most land plants,can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth.The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobi...Legumes,unlike most land plants,can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth.The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobial infection at the root epidermis with cell division in the cortex.The nodules house the nitrogen-fixing rhizobia in organelle-like structures known as symbiosomes,which enable nitrogen fixation and facilitate the exchange of metabolites between the host and symbionts.In addition to this beneficial interaction,legumes are continuously exposed to would-be pathogenic microbes;therefore the ability to discriminate pathogens from symbionts is a major determinant of plant survival under natural conditions.Here,we summarize recent advances in the understanding of root nodule symbiosis signaling,transcriptional regulation,and regulation of plant immunity during legume-rhizobium symbiosis.In addition,we propose several important questions to be addressed and provide insights into the potential for engineering the capacity to fix nitrogen in legume and nonlegume plants.展开更多
AIM: To investigate whether circulating microRNAs (miRNAs) can serve as molecular markers to predict liver injury resulted from chronic hepatitis B (CHB). METHODS: The profiles of serum miRNA expression were fir...AIM: To investigate whether circulating microRNAs (miRNAs) can serve as molecular markers to predict liver injury resulted from chronic hepatitis B (CHB). METHODS: The profiles of serum miRNA expression were first generated with serum samples collected from 10 patients with CHB and 10 healthy donors (Ctrls) by microarray analysis. The levels of several miRNAs were further quantitated by real-time reverse transcription polymerase chain reaction with serum samples from another 24 CHB patients and 24 Ctrls. Serum samples of 20 patients with nonalcohlic steatohepatitis (NASH) were also included for comparison. The comparison in the levels of miRNAs between groups (CHB, NASH and Ctrl) was analyzed with Mann-Whitney U-test. The cor- relation between miRNAs and clinical pathoparameters was analyzed using Spearman correlation analysis or canonical correlation analysis. The receiver-operator characteristic (ROC) curves were also generated to de- termine the specificity and sensitivity of each individual miRNA in distinguishing patients with CriB from Ctrls. RESULTS: miRNA profile analysis showed that 34 miR- NAs were differentially expressed between CriB and Ctrl subjects, in which 12 were up-regulated and 22 down-regulated in CriB subject (fold change 〉 2.0 and P 〈 0.01). The median levels of miR-122, -572, -575 and -638 were significantly higher (P 〈 1.00 × 10-5) while miR-744 significantly lower (P 〈 1.0× 10-6) in Crib compared with the Ctrl. The levels of miR-122, -572 and -638 were also higher (P 〈 1.00×10-3) while the level of miR-744 lower in CriB (P 〈 0.05) than in NASH, although the difference between them was not as significant as that between CHB and Ctrl. ROC curve analysis revealed that the levels of miR-122, -572, -575, -638 and -744 in serum were sensitive and specific enough to distinguish CriB, NASH and Ctrl. Multivariate analysis further showed that the levels of these miRNAs were correlated with the liver function parameters. Most signific展开更多
Coronavirus disease 2019(COVID-19),caused by the novel human coronavirus SARS-CoV-2,is currently a major threat to public health worldwide.The viral spike protein binds the host receptor angiotensin-converting enzyme ...Coronavirus disease 2019(COVID-19),caused by the novel human coronavirus SARS-CoV-2,is currently a major threat to public health worldwide.The viral spike protein binds the host receptor angiotensin-converting enzyme 2(ACE2)via the receptor-binding domain(RBD),and thus is believed to be a major target to block viral entry.Both SARS-CoV-2 and SARS-CoV share this mechanism.Here we functionally analyzed the key amino acid residues located within receptor binding motif of RBD that may interact with human ACE2 and available neutralizing antibodies.The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice;however,the cross-neutralizing activity was much weaker,indicating that there are distinct antigenic features in the RBDs of the two viruses.This finding was confirmed with the available neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2.It is worth noting that a newly developed SARS-CoV-2 human antibody,HA001,was able to neutralize SARS-CoV-2,but failed to recognize SARS-CoV.Moreover,the potential epitope residues of HA001 were identified as A475 and F486 in the SARS-CoV-2 RBD,representing new binding sites for neutralizing antibodies.Overall,our study has revealed the presence of different key epitopes between SARS-CoV and SARSCoV-2,which indicates the necessity to develop new prophylactic vaccine and antibody drugs for specific control of the COVID-19 pandemic although the available agents obtained from the SARS-CoV study are unneglectable.展开更多
Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two...Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.展开更多
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferat...The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferation,and helps tumor cells to survive under certain genetic or environmental stresses.Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes,in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways.Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation.This cancer metabolic phenotype,described firstly by German physiologist Otto Warburg,ensures enhanced glycolytic metabolism for the biosynthesis of macromolecules.The conception of metabolite signaling,i.e.,metabolites are regulators of cell signaling,provides novel insights into how reactive oxygen species(ROS)and other metabolites deregulation may regulate redox homeostasis,epigenetics,and proliferation of cancer cells.Moreover,the unveiling of noncanonical functions of metabolic enzymes,such as the moonlighting functions of phosphoglycerate kinase 1(PGK1),reassures the importance of metabolism in cancer development.The metabolic,microRNAs,and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome.Among them,cancer microenvironmental cells are immune cells which exert profound effects on cancer cells.Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.展开更多
Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not kn...Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.展开更多
PIWI-clade proteins harness pi RNAs of 24–33 nt in length.Of great puzzles are how PIWI-clade proteins incorporate pi RNAs of different sizes and whether the size matters to PIWI/pi RNA function.Here we report that a...PIWI-clade proteins harness pi RNAs of 24–33 nt in length.Of great puzzles are how PIWI-clade proteins incorporate pi RNAs of different sizes and whether the size matters to PIWI/pi RNA function.Here we report that a PIWI-Ins module unique in PIWIclade proteins helps define the length of pi RNAs.Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter pi RNAs and causes spermiogenic failure in mice,demonstrating the functional importance of this regulatory module.Mechanistically,we show that longer pi RNAs provide additional complementarity to target m RNAs,thereby enhancing the assembly of the MIWI/e IF3f/Hu R super-complex for translational activation.Importantly,we identify a c.1108C>T(p.R370W)mutation of HIWI(human PIWIL1)in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer pi RNAs.These findings reveal a critical role of PIWI-Ins-ensured longer pi RNAs in fine-tuning MIWI/pi RNA targeting capacity,proven essential for spermatid development and male fertility.展开更多
This multicenter phase-II trial aimed to investigate the efficacy,safety,and predictive biomarkers of toripalimab plus chemotherapy as second-line treatment in patients with EGFR-mutant-advanced NSCLC.Patients who fai...This multicenter phase-II trial aimed to investigate the efficacy,safety,and predictive biomarkers of toripalimab plus chemotherapy as second-line treatment in patients with EGFR-mutant-advanced NSCLC.Patients who failed from first-line EGFR-TKIs and did not harbor T790M mutation were enrolled.Toripalimab plus carboplatin and pemetrexed were administrated every three weeks for up to six cycles,followed by the maintenance of toripalimab and pemetrexed.The primary endpoint was objective-response rate(ORR).Integrated biomarker analysis of PD-L1 expression,tumor mutational burden(TMB),CD8+tumor-infiltrating lymphocyte(TIL)density,whole-exome,and transcriptome sequencing on tumor biopsies were also conducted.Forty patients were enrolled with an overall ORR of 50.0%and disease-control rate(DCR)of 87.5%.The median progression free survival(PFS)and overall survival were 7.0 and 23.5 months,respectively.The most common treatment-related adverse effects were leukopenia,neutropenia,anemia,ALT/AST elevation,and nausea.Biomarker analysis showed that none of PD-L1 expression,TMB level,and CD8+TIL density could serve as a predictive biomarker.Integrated analysis of whole-exome and transcriptome sequencing data revealed that patients with DSPP mutation had a decreased M2 macrophage infiltration and associated with longer PFS than those of wild type.Toripalimab plus chemotherapy showed a promising anti-tumor activity with acceptable safety profiles as the second-line setting in patients with EGFR-mutant NSCLC.DSPP mutation might serve as a potential biomarker for this combination.A phase-III trial to compare toripalimab versus placebo in combination with chemotherapy in this setting is ongoing(NCT03924050).展开更多
Surgery is the comm on treatme nt for early lung cancer with multiple pulm onary no dules,but it is often accompanied by the problem of significant malignancy of other nodules in non-therapeutic areas.In this study,we...Surgery is the comm on treatme nt for early lung cancer with multiple pulm onary no dules,but it is often accompanied by the problem of significant malignancy of other nodules in non-therapeutic areas.In this study,we found that a combined treatment of local rad iofreq ue ncy ablati on(RFA)and melatonin(MLT)greatly improved clinical outcomes for early lung cancer patie nts with multiple pulmonary nodules by minimizing lung function injury and reducing the probability of malignant transformation or enlargement of nodules in non-ablated areas.Mechanically,as demonstrated in an associated mouse lung tumor model,RFA not only effectively remove treated tumors but also stimulate antitumor immunity,which could inhibit tumor growth in non-ablated areas.MLT enhanced RFA-stimulated NK activity and exerted synergistic antitumor effects with RFA.Transcriptomics and proteomics analyses of residual tumor tissues revealed enhanced oxidative phosphorylation and reduced acidification as well as hypoxia in the tumor microenvironment,which suggests reprogrammed tumor metabolism after combined treatment with RFA and MLT.Analysis of residual tumor further revealed the depressed activity of MAPK,NF-kappa B,Wnt,and Hedgehog pathways and upregulated P53 pathway in tumors,which was in line with the inhibited tumor growth.Combined RFA and MLT treatment also reversed the Warburg effect and decreased tumor malignancy.These findings thus demonstrated that combined treatment of RFA and MLT effectively inhibited the malignancy of non-ablated nodules and provided an innovative non-invasive strategy for treating early lung tumors with multiple pulmonary nodules.Trial registration:www.chictr.org.cn,identifier ChiCTR2100042695,http://www.chictr.org.cn/showproj.aspx?proj=120931.展开更多
基金supported in part by grants from 973 Program from the Chinese Ministry of Science and Technology (MOST) (2014CB964704 and 2015CB964503)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB19000000)the National Natural Science Foundation of China (NSFC) (31371463, 81672119, and 81725010)
文摘The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
基金This work was financially supported by grants from the National Key Research and Development Program of China (2016YFD0100902), the National Natural Science Foundation of China (numbers 31400223, 31471461, and 31625004), the Basic Research Program from the Shanghai Municipal Science and Technology Commission (14JC1400800), the Basic Application Research Program from the Shanghai Municipal Agriculture Commission (2014-7-1-2), and the Agricultural Seed Project of Shandong Province.
文摘Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.
基金National Key R&D Program of China (2018YFC1706200,2018YFD1000701-4)the National Natural Science Foundation of China (31870282, 31700268 and 31788103)+2 种基金the Fund of Chinese Academy of Sciences (QYZDY-SSW-SMC026 and 153D31KYSB20160074)the Chenshan Special Fund for Shanghai Landscaping Administration Bureau Program (G182401, G172402, G182402, G192413, and G192414)the CAS/JIC and Center of Excellence for Plant and Microbial Sciences (CEPAMS) joint foundation through support to Q.Z., X.Y.C., J.Y., and C.M. Q.Z. and J.Y. were also supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots,"Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, sesamum indicum and Salvia splendens,revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scu-tellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its newfunc- tion following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionaliza-tions were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.
基金supported by the National Natural Science Foundation of China(31871380,32000500,32070730,32170756,32170804,81330008,81671377,81725010,81725010,81872874,81921006,81922027,81971312,81991512,82030041,82103167,82122024,82125009,82125011,82130044,91749126,91949101,91949207,92049302)the National Key Research and Development Program of China(2017YFA0506400,2018YFA0800200,2018YFA0800700,2018YFA0900200,2018YFC2000100,2018YFC2000400,2018YFE-0203700,20192ACB70002,2019YFA0802202,2020YFA0113400,2020YFA0803401,2020YFA0804000,2020YFC2002800,2020YFC-2002900,2021ZD0202401)+11 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16010100,XDA16010603,XDA16020400,XDB29020000,XDB39000000,XDB39000000,XDB39030300)the China Association for Science and Technology(2021QNRC001)the Beijing Municipal Science and Technology Commission(Z200022)the Natural Science Foundation of Shanghai(21JC1406400)the Key Programs of the Jiangxi ProvinceChina(20192ACB70002)the“Shu Guang”Project supported by the Shanghai Municipal Education Commission and Shanghai Education Development Foundation(19SG18)the Shanghai Sailing Program(22YF1434300)the Research Project of Joint Laboratory of University of Science and Technology of China and Anhui Mental Health Center(2019LH03)the Fundamental Research Funds for the Central Universities(WK2070210004)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS20210002)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022083)。
文摘Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human diseases,including cardiovascular disease,diabetes,neurological degeneration,and cancer.Therefore,the growing emphasis on “healthy aging” raises a series of important questions in life and social sciences.In recent years,there has been unprecedented progress in aging research,particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes.In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases,we review the descriptive,conceptual,and interventive aspects of the landscape of aging composed of a number of layers at the cellular,tissue,organ,organ system,and organismal levels.
基金supported by grants from the Beijing Municipal Science and Technology Committee (Z181100001318003)the National Natural Science Foundation of China (31421002, 31561143001,31630048, and 31790403)+17 种基金the National Natural Science Foundation of China (91853113 and 31872716)the National Natural Science Foundation of China (11672317)the National Natural Science Foundation of China (31871394 and 31670730)supported by grants from the National Natural Science Foundation of China (31420103916 and 31991192)the Ministry of Science and Technology of China (2017YFA0503401)supported by grants from the Ministry of Science and Technology of China (2019YFA0707000)supported by grants from the Ministry of Science and Technology of China (2019YFA0508401)the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB19000000)the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC006)supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2017YFA0506600 and 31871309)supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2019YFA0508403 and 31871443)supported by grants from the Ministry of Science and Technology of China (2016YFA0501902)the Science and Technology Commission of Shanghai Municipality (18JC1420500)the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02)the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01)CAS (XDB19020102)supported by grants from RGC of Hong Kong (AoE-M09-12 and C6004-17G)National Key R&D Program of China (2016YFA0501903 and 2019YFA0508402)。
文摘Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation(LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization,gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin-and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre-and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
基金supported by the National Natural Science Foundation of China(31730036,31871380,31871382,31930055,31930058,32000500,32022034,32030033,32070730,32130046,3217050247,32150005,32200595,32222024,81730019,81730022,81830014,81921006,81925005,81970426,81971301,81971312,82030041,82061160495,82070805,82071595,82090020,82100841,82120108009,82122024,82125002,82125011,82125012,82130045,82171284,82173061,82173398,82225007,82225015,82225017,82225018,82230047,82230088,82271600,91949106,91949201,92049116,92049302,92049304,92149303,92149306,92157202,92168201,92169102,92249301,92268201)the National Key Research and Development Program of China(2018YFA0800700,2018YFC2000100,2018YFC2000102,2018YFC2002003,2019YFA0110900,2019YFA0801703,2019YFA0801903,2019YFA0802202,2019YFA0904800,2020YFA0113400,2020YFA0803401,2020YFA0804000,2020YFC2002900,2020YFC2008000,2020YFE0202200,2021YFA0804900,2021YFA1100103,2021YFA1100900,2021YFE0114200,2021ZD0202400,2022YFA0806001,2022YFA0806002,2022YFA0806600,2022YFA1103200,2022YFA1103601,2022YFA1103701,2022YFA1103800,2022YFA1103801,2022YFA1104100,2022YFA1104904,2022YFA1303000,2022YFC2009900,2022YFC2502401,2022YFC3602400,2022YFE0118000,2022ZD0213200)+9 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16030302,XDB39000000,XDB39030600)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020085,2021080)CAS Project for Young Scientists in Basic Research(YSBR-076)the Program of the Beijing Natural Science Foundation(JQ20031)Clinical Research Operating Fund of Central High level hospitals(2022-PUMCHE-001)CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M1-004)Talent Program of the Chinese Academy of Medical Science(2022RC310-10)Research Funds from Health@Inno HK Program launched by Innovation Technology Commission of the Hong Kong Special Administrative Region,Guangdong Basic and Applied Basic Research Foundation(2020B1515020044)Guangzhou Planned Project of Science and Technology(202002020039)the Major Technology Innovation of Hubei Province(2019ACA14
文摘Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.
基金supported by the National Natural Science Foundation of China(31825015,31921001,31921004,31991222,32122012,32002119,and 31788103)to X.H.,S.Y.,J.G.,Y.L.,B.W.,Z.Z.,and J.L.,respectively。
文摘Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks.In this review,we summarize the research progress of rice biology over past decades,including omics,genome-wide association study,phytohormone action,nutrient use,biotic and abiotic responses,photoperiodic flowering,and reproductive development(fertility and sterility).For the roads ahead,cutting-edge technologies such as new genomics methods,high-throughput phenotyping platforms,precise genome-editing tools,environmental microbiome optimization,and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice,and facilitate integrations of the knowledge for agricultural applications.
基金supported by the National Natural Science Foundation of China(NSFC)[81725010,81672119,81991512,82102554]the Strategic Priority Research Program of the Chinese Academy of Sciences[Grant No.XDB19000000]the Space Medical Experiment Project of China Manned Space Program[HYZHXM01025].
文摘Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis;skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
基金from National Key R&D Program of China(Grant No.2017YFC0840300 to Z.R.)National Key R&D Program of China(Grant No.2020YFA0707500 to H.Y.)+1 种基金Science and Technology Commission of Shanghai Municipality(Grant Nos.20431900200 and 20XD1422900)Department of Science and Technology of Guangxi Zhuang Autonomous Region(Grant No.5602020AB40007).
文摘Dear Editor,Since December 2019,the pandemic of coronavirus disease 2019(COVID-19)has taken a heavy toll on global health,creating an urgent need to develop effective strategies for prevention and treatment.The etiological agent,known as severe acute respiratory syndrome coronavirus 2(SARSCoV-2),has infected nearly 229.2 million people worldwide with more than 4.7 million deaths as of September 15,2021.Older age and preexisting health conditions are associated with worse clinical prognosis including higher mortality rates(Zhou et al.,2020).The global race to combat this pandemic has led to rapid deployment of numerous effective vaccines against SARS-CoV-2(Tregoning et al.,2021).However,the emergence of viral variants,including the Delta variant(B.1.617.2),compromised vaccine effectiveness with resurgence of SARS-CoV-2 infection among highly vaccinated population(Keehner et al.,2021).Therefore,development of therapeutics against the more conserved viral targets would be essential to contain the spread of COVID-19 and reduce mortality.
基金Supported by grants to G. S.: the National Key R&D Program of China (2019YFA0802600 and 2018YFC1004500)the National Natural Science Foundation of China (31725016, 31930019, and 91940303)and the Strategic Priority Research Program (Pilot Study) “Biological basis of aging and therapeutic strategies” of the Chinese Academy of Sciences (XDPB10).
文摘Mammalian mitochondria have small genomes encoding very limited numbers of proteins.Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria.Here,we report the identification of hundreds of circular RNAs(mecciRNAs)encoded by the mitochondrial genome.We provide both in vitro and in vivo evidence to show that mecciRNAs facilitate the mitochondrial entry of nuclear-encoded proteins by serving as molecular chaperones in the folding of imported proteins.Known components involved in mitochondrial protein and RNA importation,such as TOM40 and PNPASE,interact with mecciRNAs and regulate protein entry.The expression of mecciRNAs is regulated,and these transcripts are critical for the adaption of mitochondria to physiological conditions and diseases such as stresses and cancers by modulating mitochondrial protein importation.mecciRNAs and their associated physiological roles add categories and functions to the known eukaryotic circular RNAs and shed novel light on the communication between mitochondria and the nucleus.
文摘Little is known about how chronic inflammation contributes to the progression of hepatoceUular carcinoma (HCC), especially the initiation of cancer. To uncover the critical transition from chronic inflammation to HCC and the molecular mechanisms at a network level, we analyzed the time-series proteomic data of woodchuck hepatitis virus/c.myc mice and age-matched wt-C57BL/6 mice using our dynamical network biomarker (DNB) model. DNB analysis indicated that the 5th month after birth of transgenic mice was the critical period of cancer initiation, just before the critical transition, which is consistent with clinical symptoms. Meanwhile, the DNB-associated network showed a drastic inversion of protein expression and coexpression levels before and after the critical transition. Two members of DNB, PLA2G6 and CYP2C44, along with their associated differentially expressed proteins, were found to induce dysfunction of arachidonic acid metabolism, further activate inflammatory responses through inflammatory mediator regulation of transient receptor potential channels, and finally lead to impairments of liver detoxification and malignant transition to cancer. As a c-Myc target, PLA2G6 positively correlated with c-Myc in expression, showing a trend from decreasing to increasing during carcinogenesis, with the minimal point at the critical transition or tipping point. Such trend of homologous PLA2G6 and c-Myc was also observed during human hepatocarcinogenesis, with the minimal point at high-grade dysplastic nodules (a stage just before the carcinogenesis). Our study implies that PLA2G6 might function as an oncogene like famous c-Myc during hepatocar- cinogenesis, while downregulation of PLA2G6 and c-Myc could be a warning signal indicating imminent carcinogenesis.
基金supported by grants from the National Natural Science Foundation of China(32070270,32050081,and 31700208)。
文摘Legumes,unlike most land plants,can form symbiotic root nodules with nitrogen-fixing bacteria to secure nitrogen for growth.The formation of nitrogen-fixing nodules on legume roots requires the coordination of rhizobial infection at the root epidermis with cell division in the cortex.The nodules house the nitrogen-fixing rhizobia in organelle-like structures known as symbiosomes,which enable nitrogen fixation and facilitate the exchange of metabolites between the host and symbionts.In addition to this beneficial interaction,legumes are continuously exposed to would-be pathogenic microbes;therefore the ability to discriminate pathogens from symbionts is a major determinant of plant survival under natural conditions.Here,we summarize recent advances in the understanding of root nodule symbiosis signaling,transcriptional regulation,and regulation of plant immunity during legume-rhizobium symbiosis.In addition,we propose several important questions to be addressed and provide insights into the potential for engineering the capacity to fix nitrogen in legume and nonlegume plants.
基金Supported by National Science and Technology Major Project of China, No. 2012ZX10005001-004Leading Academic Discipline Project of Shanghai Municipal Education Commission, No.J50301+1 种基金Doctoral Fund of Ministry of Education of China, No.20093107120010E-institutes of Shanghai Municipal Education Commission, No. E03008
文摘AIM: To investigate whether circulating microRNAs (miRNAs) can serve as molecular markers to predict liver injury resulted from chronic hepatitis B (CHB). METHODS: The profiles of serum miRNA expression were first generated with serum samples collected from 10 patients with CHB and 10 healthy donors (Ctrls) by microarray analysis. The levels of several miRNAs were further quantitated by real-time reverse transcription polymerase chain reaction with serum samples from another 24 CHB patients and 24 Ctrls. Serum samples of 20 patients with nonalcohlic steatohepatitis (NASH) were also included for comparison. The comparison in the levels of miRNAs between groups (CHB, NASH and Ctrl) was analyzed with Mann-Whitney U-test. The cor- relation between miRNAs and clinical pathoparameters was analyzed using Spearman correlation analysis or canonical correlation analysis. The receiver-operator characteristic (ROC) curves were also generated to de- termine the specificity and sensitivity of each individual miRNA in distinguishing patients with CriB from Ctrls. RESULTS: miRNA profile analysis showed that 34 miR- NAs were differentially expressed between CriB and Ctrl subjects, in which 12 were up-regulated and 22 down-regulated in CriB subject (fold change 〉 2.0 and P 〈 0.01). The median levels of miR-122, -572, -575 and -638 were significantly higher (P 〈 1.00 × 10-5) while miR-744 significantly lower (P 〈 1.0× 10-6) in Crib compared with the Ctrl. The levels of miR-122, -572 and -638 were also higher (P 〈 1.00×10-3) while the level of miR-744 lower in CriB (P 〈 0.05) than in NASH, although the difference between them was not as significant as that between CHB and Ctrl. ROC curve analysis revealed that the levels of miR-122, -572, -575, -638 and -744 in serum were sensitive and specific enough to distinguish CriB, NASH and Ctrl. Multivariate analysis further showed that the levels of these miRNAs were correlated with the liver function parameters. Most signific
基金supported by the National Natural Science Foundation of China(82041015)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19000000)+1 种基金the Key International Partnership Program of the Chinese Academy of Sciences(153D31KYSB20180055)the National Major Science and Technology Projects of China(2018ZX10301403).
文摘Coronavirus disease 2019(COVID-19),caused by the novel human coronavirus SARS-CoV-2,is currently a major threat to public health worldwide.The viral spike protein binds the host receptor angiotensin-converting enzyme 2(ACE2)via the receptor-binding domain(RBD),and thus is believed to be a major target to block viral entry.Both SARS-CoV-2 and SARS-CoV share this mechanism.Here we functionally analyzed the key amino acid residues located within receptor binding motif of RBD that may interact with human ACE2 and available neutralizing antibodies.The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice;however,the cross-neutralizing activity was much weaker,indicating that there are distinct antigenic features in the RBDs of the two viruses.This finding was confirmed with the available neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2.It is worth noting that a newly developed SARS-CoV-2 human antibody,HA001,was able to neutralize SARS-CoV-2,but failed to recognize SARS-CoV.Moreover,the potential epitope residues of HA001 were identified as A475 and F486 in the SARS-CoV-2 RBD,representing new binding sites for neutralizing antibodies.Overall,our study has revealed the presence of different key epitopes between SARS-CoV and SARSCoV-2,which indicates the necessity to develop new prophylactic vaccine and antibody drugs for specific control of the COVID-19 pandemic although the available agents obtained from the SARS-CoV study are unneglectable.
基金Supplementary information is linked to the online version of the paper on the Cell Research website.Acknowledgments We thank Anning Lin (The University of Chicago) for the critical reading of the paper, members in the Chen lab for technical help, the cell biology and molecular biology core facilities for confocal study and Q-PCR, and Shanghai Biochip Co Ltd. for microarray analysis. The H3K27me2 antibody was kindly provided by Li Tang (Fudan University) and Thomas Jenuwein (Research Institute of Molecular Pathology, The Vienna Biocenter). This work was supported by the National Basic Research Program of China (2007CB957900, 2006CB943902, 2007CB947101, 2008KR0695, 2009CB941100, 2005CB522704), the Chinese Academy of Sciences (KSCX2-YW-R-04), the National Natural Science Foundation of China (90919026, 30870538,30623003, 30721065, 30830034, 90919046), the Shanghai Pujiang Program (0757S11361), the Shanghai Key Project of Basic Science Research (06DJ14001, 06DZ22032, 08DJ1400501), and the Council of Shanghai Municipal Government for Science and Technology (088014199).
文摘Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.
文摘The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferation,and helps tumor cells to survive under certain genetic or environmental stresses.Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes,in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways.Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation.This cancer metabolic phenotype,described firstly by German physiologist Otto Warburg,ensures enhanced glycolytic metabolism for the biosynthesis of macromolecules.The conception of metabolite signaling,i.e.,metabolites are regulators of cell signaling,provides novel insights into how reactive oxygen species(ROS)and other metabolites deregulation may regulate redox homeostasis,epigenetics,and proliferation of cancer cells.Moreover,the unveiling of noncanonical functions of metabolic enzymes,such as the moonlighting functions of phosphoglycerate kinase 1(PGK1),reassures the importance of metabolism in cancer development.The metabolic,microRNAs,and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome.Among them,cancer microenvironmental cells are immune cells which exert profound effects on cancer cells.Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
文摘Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.
基金supported by the National Key Research and Development Program of China(2022YFA1303300,2021YFC2700200,2017YFA0504400)Chinese Academy of Sciences(“Strategic Priority Research Program”grants XDB37000000)+3 种基金the National Natural Science Foundation of China(31830109,31821004,91940305,31961133022,32101037,32271347,21933010,22203089)Science and Technology Commission of Shanghai Municipality(17JC1420100,2017SHZDZX01,19JC1410200,21YF1452700,21ZR1470500)the Young Elite Scientist Sponsorship Program of the China Association for Science and Technology(2021QNRC001)the Foundation of Key Laboratory of Gene Engineering of the Ministry of Education。
文摘PIWI-clade proteins harness pi RNAs of 24–33 nt in length.Of great puzzles are how PIWI-clade proteins incorporate pi RNAs of different sizes and whether the size matters to PIWI/pi RNA function.Here we report that a PIWI-Ins module unique in PIWIclade proteins helps define the length of pi RNAs.Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter pi RNAs and causes spermiogenic failure in mice,demonstrating the functional importance of this regulatory module.Mechanistically,we show that longer pi RNAs provide additional complementarity to target m RNAs,thereby enhancing the assembly of the MIWI/e IF3f/Hu R super-complex for translational activation.Importantly,we identify a c.1108C>T(p.R370W)mutation of HIWI(human PIWIL1)in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer pi RNAs.These findings reveal a critical role of PIWI-Ins-ensured longer pi RNAs in fine-tuning MIWI/pi RNA targeting capacity,proven essential for spermatid development and male fertility.
基金This study was also supported in part by grants from the National Natural Science Foundation of China(No.81871865,81874036,81972167,82102859,31930022,31771476,and 12026608)National Science and Technology Major Project(No.2017YFA0505500)+5 种基金the Strategic Priority Project of Chinese Academy of Sciences(No.XDB38040400,XDB38020000)the Backbone Program of Shanghai Pulmonary Hospital(No.FKGG1802)Shanghai Pujiang Talent Plan(No.2019PJD048)Shanghai Science and Technology Committee Foundation(NO.19411950300)Shanghai Key disciplines of Respiratory(No.2017ZZ02012)the Shanghai Sailing Program(No.20YF1407500).
文摘This multicenter phase-II trial aimed to investigate the efficacy,safety,and predictive biomarkers of toripalimab plus chemotherapy as second-line treatment in patients with EGFR-mutant-advanced NSCLC.Patients who failed from first-line EGFR-TKIs and did not harbor T790M mutation were enrolled.Toripalimab plus carboplatin and pemetrexed were administrated every three weeks for up to six cycles,followed by the maintenance of toripalimab and pemetrexed.The primary endpoint was objective-response rate(ORR).Integrated biomarker analysis of PD-L1 expression,tumor mutational burden(TMB),CD8+tumor-infiltrating lymphocyte(TIL)density,whole-exome,and transcriptome sequencing on tumor biopsies were also conducted.Forty patients were enrolled with an overall ORR of 50.0%and disease-control rate(DCR)of 87.5%.The median progression free survival(PFS)and overall survival were 7.0 and 23.5 months,respectively.The most common treatment-related adverse effects were leukopenia,neutropenia,anemia,ALT/AST elevation,and nausea.Biomarker analysis showed that none of PD-L1 expression,TMB level,and CD8+TIL density could serve as a predictive biomarker.Integrated analysis of whole-exome and transcriptome sequencing data revealed that patients with DSPP mutation had a decreased M2 macrophage infiltration and associated with longer PFS than those of wild type.Toripalimab plus chemotherapy showed a promising anti-tumor activity with acceptable safety profiles as the second-line setting in patients with EGFR-mutant NSCLC.DSPP mutation might serve as a potential biomarker for this combination.A phase-III trial to compare toripalimab versus placebo in combination with chemotherapy in this setting is ongoing(NCT03924050).
基金supported by the National Natural Science Foundation of China(Nos.31770131,81473469)International Cooperation Project of the Belt and Road(No.20400750600)+1 种基金Shanghai Shen Kang Hospital Development Center Plan(SHDC12018119)Shanghai Municipal Commission of Health and Family Plan(201840056).
文摘Surgery is the comm on treatme nt for early lung cancer with multiple pulm onary no dules,but it is often accompanied by the problem of significant malignancy of other nodules in non-therapeutic areas.In this study,we found that a combined treatment of local rad iofreq ue ncy ablati on(RFA)and melatonin(MLT)greatly improved clinical outcomes for early lung cancer patie nts with multiple pulmonary nodules by minimizing lung function injury and reducing the probability of malignant transformation or enlargement of nodules in non-ablated areas.Mechanically,as demonstrated in an associated mouse lung tumor model,RFA not only effectively remove treated tumors but also stimulate antitumor immunity,which could inhibit tumor growth in non-ablated areas.MLT enhanced RFA-stimulated NK activity and exerted synergistic antitumor effects with RFA.Transcriptomics and proteomics analyses of residual tumor tissues revealed enhanced oxidative phosphorylation and reduced acidification as well as hypoxia in the tumor microenvironment,which suggests reprogrammed tumor metabolism after combined treatment with RFA and MLT.Analysis of residual tumor further revealed the depressed activity of MAPK,NF-kappa B,Wnt,and Hedgehog pathways and upregulated P53 pathway in tumors,which was in line with the inhibited tumor growth.Combined RFA and MLT treatment also reversed the Warburg effect and decreased tumor malignancy.These findings thus demonstrated that combined treatment of RFA and MLT effectively inhibited the malignancy of non-ablated nodules and provided an innovative non-invasive strategy for treating early lung tumors with multiple pulmonary nodules.Trial registration:www.chictr.org.cn,identifier ChiCTR2100042695,http://www.chictr.org.cn/showproj.aspx?proj=120931.