期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
基于Softmax函数增强卷积神经网络—双向长短期记忆网络框架的交通拥堵预测算法 被引量:15
1
作者 陈悦 杨柳 +3 位作者 李帅 刘恒 唐优华 郑佳雯 《科学技术与工程》 北大核心 2022年第29期12917-12926,共10页
对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提... 对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提出了一种改进的深度学习预测模型(CS-BiLSTM),该模型基于卷积神经网络(convolutional neural networks, CNN)和双向长短期记忆(bidirectional long short-term memory, BiLSTM),并结合Softmax函数增强CNN提取出的交通空间特征信息。最后以成都市出租车的全球定位系统(global positioning system, GPS)数据进行验证。结果表明,所提出的CS-BiLSTM模型具有更高的准确性,其性能相比CNN-BiLSTM网络预测框架提升了13%。 展开更多
关键词 交通拥堵预测 旅行时间指数(TTI) 卷积神经网络(CNN) Softmax函数 双向长短期记忆(BiLSTM)
下载PDF
保持细节几何特征的三维网格模型轻量化算法 被引量:15
2
作者 张韵 王淑营 +1 位作者 郑庆 张海柱 《计算机应用》 CSCD 北大核心 2023年第4期1226-1232,共7页
对三维模型进行轻量化的一个重要策略是利用网格简化算法减少模型表面的三角面片数量,其中广泛使用的边折叠算法相较于其他网格简化算法效率更高、简化效果更好,然而该算法存在简化过程中可能损坏或丢失部分细节几何特征的问题。为了解... 对三维模型进行轻量化的一个重要策略是利用网格简化算法减少模型表面的三角面片数量,其中广泛使用的边折叠算法相较于其他网格简化算法效率更高、简化效果更好,然而该算法存在简化过程中可能损坏或丢失部分细节几何特征的问题。为了解决上述问题,提出通过增加曲线近似曲率和模型待折叠边的一阶邻域三角形的平均面积作为惩罚因子,以优化原始算法的边折叠代价。首先,根据几何中曲线曲率的定义,提出了曲线近似曲率的计算公式;其次,在顶点法向量的计算过程中,使用面积加权和内角加权两个阶段对初始法向量进行修正,从而考虑更加丰富的模型几何信息。通过实验验证了优化后算法的性能,与经典的二次误差测度(QEM)算法、顾及角度误差的网格简化算法相比,优化算法处理后的模型的最大误差分别至少降低了73.96%和49.77%;与QEM算法相比,优化算法处理后的模型Hausdorff距离至少降低了17.69%。可见,在模型轻量化的过程中,优化算法能够减少模型的形变,更好地维持自身的细节几何特征。 展开更多
关键词 网格简化 边折叠 曲线近似曲率 一阶邻域三角形面积 模型轻量化
下载PDF
基于深度学习的图像分割综述 被引量:9
3
作者 黄雯珂 滕飞 +1 位作者 王子丹 冯力 《计算机科学》 CSCD 北大核心 2024年第2期107-116,共10页
图像分割是计算机视觉中的一项基本任务,其主要目的是从图像输入中提取有意义和连贯的区域。多年来,图像分割领域已经开发出了各种各样的技术,包括基于传统方法,以及利用卷积神经网络的最新图像分割技术。随着深度学习的发展,更多的深... 图像分割是计算机视觉中的一项基本任务,其主要目的是从图像输入中提取有意义和连贯的区域。多年来,图像分割领域已经开发出了各种各样的技术,包括基于传统方法,以及利用卷积神经网络的最新图像分割技术。随着深度学习的发展,更多的深度学习算法也被应用到图像分割任务中。特别地,近两年学者对深度学习的兴趣高涨,涌现了许多应用于图像分割任务的深度学习算法。然而大部分新的算法还没有被归纳分析,这将不利于后续研究的进行。文中对近两年发表的基于深度学习的图像分割研究进行了全面回顾。首先对图像分割的常用数据集进行简要介绍,然后阐明了基于深度学习的图像分割的新分类,最后讨论了现有的挑战并对今后的研究方向进行了展望。 展开更多
关键词 图像分割 语义分割 深度学习 网络结构 监督学习
下载PDF
基于改进YOLOv5的遥感小目标检测网络 被引量:10
4
作者 李嘉新 侯进 +1 位作者 盛博莹 周宇航 《计算机工程》 CAS CSCD 北大核心 2023年第9期256-264,共9页
受遥感图像背景复杂、分辨率高、有效信息量少等因素影响,现有目标检测算法在检测小目标过程中存在错检、漏检等问题。提出基于YOLOv5的遥感小目标检测算法YOLOv5-RS。为有效减少图像中复杂背景和负样本的干扰,构建并行混合注意力模块,... 受遥感图像背景复杂、分辨率高、有效信息量少等因素影响,现有目标检测算法在检测小目标过程中存在错检、漏检等问题。提出基于YOLOv5的遥感小目标检测算法YOLOv5-RS。为有效减少图像中复杂背景和负样本的干扰,构建并行混合注意力模块,采用卷积替换全连接层和移除池化层的操作来优化注意力模块生成权重特征图的过程。为获取和传递更丰富且更具判别性的小目标特征,调整下采样倍数并在模型训练过程中增加小目标信息丰富的浅层特征,同时设计卷积与多头自注意力相结合的特征提取模块,通过对局部和全局信息进行联合表征以突破普通卷积提取的局限性,从而获得更大的感受野。采用EIoU损失函数优化预测框与检测框的回归过程,增强小目标的定位能力。在遥感小目标数据集上进行实验以验证该算法的有效性。实验结果表明,与YOLOv5s相比,该算法在参数量减少20%的情况下平均检测精度提升1.5个百分点,其中,小车类目标的平均检测精度提升3.2个百分点;与EfficientDet、YOLOx、YOLOv7相比,该算法能有效兼顾检测精度和实时性。 展开更多
关键词 遥感小目标检测 改进YOLOv5 并行混合注意力 全局特征融合 损失函数
下载PDF
城市治理一网统管 被引量:11
5
作者 郑宇 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第1期19-25,共7页
城市的高速发展对城市治理能力和治理体系提出了更高的要求,基于一网统管的市域治理现代化是城市安全稳定的底线、城市综合实力的体现和城市运行效率的保障。市域治理现代化在打通城市各部门数据的基础上,进一步联通各部门的业务系统,... 城市的高速发展对城市治理能力和治理体系提出了更高的要求,基于一网统管的市域治理现代化是城市安全稳定的底线、城市综合实力的体现和城市运行效率的保障。市域治理现代化在打通城市各部门数据的基础上,进一步联通各部门的业务系统,使得指令可以在不同部门之间流转,完成对事件的高效、协同处置。同时,设立市域治理指挥中心实体机构,将城管、综合治理、12345等相关部门与之一体化运行,通过机制创新和技术创新双轮驱动,创造以下4大价值:分析研判辅助决策、监测预警防范风险、联动指挥行政问效、基层治理共建共享。城市治理一网统管以城市状态一网感知和城市数据一网共享为基础,以大、中、小3屏联动为信息流转方式,以数字孪生为虚实映射的桥梁和人机交互的界面,让各部门高效协同、各层级行动一致、各事件闭环处置,确保城市的安全、稳定和发展,为全面提升国家治理体系和治理能力现代化做好承上启下的支撑。 展开更多
关键词 一网统管 城市治理 城市运行 智慧城市
原文传递
元迁移学习在少样本跨域图像分类中的研究 被引量:9
6
作者 杜彦东 冯林 +2 位作者 陶鹏 龚勋 王俊 《中国图象图形学报》 CSCD 北大核心 2023年第9期2899-2912,共14页
目的现有基于元学习的主流少样本学习方法假设训练任务和测试任务服从相同或相似的分布,然而在分布差异较大的跨域任务上,这些方法面临泛化能力弱、分类精度差等挑战。同时,基于迁移学习的少样本学习方法没有考虑到训练和测试阶段样本... 目的现有基于元学习的主流少样本学习方法假设训练任务和测试任务服从相同或相似的分布,然而在分布差异较大的跨域任务上,这些方法面临泛化能力弱、分类精度差等挑战。同时,基于迁移学习的少样本学习方法没有考虑到训练和测试阶段样本类别不一致的情况,在训练阶段未能留下足够的特征嵌入空间。为了提升模型在有限标注样本困境下的跨域图像分类能力,提出简洁的元迁移学习(compressed meta transfer learning,CMTL)方法。方法基于元学习,对目标域中的支持集使用数据增强策略,构建新的辅助任务微调元训练参数,促使分类模型更加适用于域差异较大的目标任务。基于迁移学习,使用自压缩损失函数训练分类模型,以压缩源域中基类数据所占据的特征嵌入空间,微调阶段引导与源域分布差异较大的新类数据有更合适的特征表示。最后,将以上两种策略的分类预测融合视为最终的分类结果。结果使用mini-ImageNet作为源域数据集进行训练,分别在EuroSAT(European Satellite)、ISIC(International Skin Imaging Collaboration)、CropDiseas(Crop Diseases)和Chest-X(Chest X-Ray)数据集上测试CMTL模型的跨域图像分类能力,在5-way 1-shot和5-way 5-shot跨域任务中,准确率分别达到68.87%和87.74%、34.47%和49.71%、74.92%和93.37%、22.22%和25.40%。与当前主流少样本跨域图像分类方法比较,提出的CMTL方法在各个数据集中都有较好的跨域图像分类能力。结论提出的CMTL方法综合了迁移学习和元学习方法各自在跨域任务上的优势,能有效解决少样本跨域图像分类问题。 展开更多
关键词 图像分类 少样本跨域 元学习 迁移学习 少样本学习(FSL)
原文传递
基于反馈机制与空洞卷积的道路小目标检测网络 被引量:8
7
作者 窦允冲 侯进 +1 位作者 曾雷鸣 陈子锐 《计算机工程》 CAS CSCD 北大核心 2023年第1期287-294,共8页
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Nec... 随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。 展开更多
关键词 小目标检测 YOLOv4算法 空洞卷积 反馈机制 递归特征金字塔
下载PDF
面向行人重识别的局部特征研究进展、挑战与展望 被引量:10
8
作者 姚足 龚勋 +2 位作者 陈锐 卢奇 罗彬 《自动化学报》 EI CAS CSCD 北大核心 2021年第12期2742-2760,共19页
行人重识别(Person re-identification,Re-ID)旨在跨区域、跨场景的视频中实现行人的检索及跟踪,其成果在智能监控、刑事侦查、反恐防暴等领域具有广阔的应用前景.由于真实场景下的行人图像存在光照差异大、拍摄视角不统一、物体遮挡等... 行人重识别(Person re-identification,Re-ID)旨在跨区域、跨场景的视频中实现行人的检索及跟踪,其成果在智能监控、刑事侦查、反恐防暴等领域具有广阔的应用前景.由于真实场景下的行人图像存在光照差异大、拍摄视角不统一、物体遮挡等问题,导致从图像整体提取的全局特征易受无关因素的干扰,识别精度不高.基于局部特征的方法通过挖掘行人姿态、人体部位、视角特征等关键信息,可加强模型对人体关键区域的学习,降低无关因素的干扰,从而克服全局特征的缺陷,也因此成为近几年的研究热点.本文对近年基于局部特征的行人重识别文献进行梳理,简述了行人重识别的发展历程,将基于局部特征的方法归纳为基于姿势提取、基于特征空间分割、基于视角信息、基于注意力机制四类,并详细阐述了每一类的原理及优缺点.然后在三个主流行人数据集上对典型方法的识别性能进行了分析比较,最后总结了目前基于局部特征算法的难点,并对未来本领域的研究趋势和发展方向进行展望. 展开更多
关键词 行人重识别 局部特征 深度学习 计算机视觉
下载PDF
基于深度神经网络和自注意力机制的医学实体关系抽取 被引量:10
9
作者 张世豪 杜圣东 +1 位作者 贾真 李天瑞 《计算机科学》 CSCD 北大核心 2021年第10期77-84,共8页
随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点。随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中“recurrent+CN... 随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点。随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中“recurrent+CNN”网络框架成为了医学实体关系抽取任务中的主流模型。但由于医学文本存在实体分布密度较高、实体之间的关系交错互联等问题,使得“recurrent+CNN”网络框架无法深入挖掘医学文本语句的语义特征。基于此,在“recurrent+CNN”网络框架基础之上,提出一种融合多通道自注意力机制的中文医学实体关系抽取模型,包括:1)利用BLSTM捕获文本句子的上下文信息;2)利用多通道自注意力机制深入挖掘句子的全局语义特征;3)利用CNN捕获句子的局部短语特征。通过在中文医学文本数据集上进行实验,验证了该模型的有效性,其精确率、召回率和F1值与主流的模型相比均有提高。 展开更多
关键词 医学文本 实体关系抽取 多通道自注意力 深度学习
下载PDF
基于知识图谱的智能问答意图识别联合模型 被引量:8
10
作者 马自力 王淑营 +1 位作者 张海柱 黎荣 《计算机工程与应用》 CSCD 北大核心 2023年第6期171-178,共8页
针对现有意图识别联合模型在专业领域知识图谱问答中容易发生识别领域实体以及问句分类错误的情况,提出一个结合了领域知识图谱的意图识别联合模型。该模型有三步,将领域知识图谱中实体对应的本体标签以及本体间关系导入训练数据集,形... 针对现有意图识别联合模型在专业领域知识图谱问答中容易发生识别领域实体以及问句分类错误的情况,提出一个结合了领域知识图谱的意图识别联合模型。该模型有三步,将领域知识图谱中实体对应的本体标签以及本体间关系导入训练数据集,形成包含本体标签的知识文本以及额外包含本体关系的知识文本图;通过字符级嵌入和位置信息嵌入将包含了本体标签的知识文本转化成嵌入表示并依据知识文本图创建实体关系可视矩阵,明确知识文本各成分的相关程度;将嵌入表示和实体关系可视矩阵输入模型编码层进行模型的训练。以高速列车领域知识图谱为例,经过准确率和召回率的验证,以该方法训练出的模型在高速列车领域问答数据集的意图识别任务上取得了更好的表现。 展开更多
关键词 知识图谱智能问答 意图识别 联合模型
下载PDF
面向多价值链的汽车配件需求预测模型 被引量:9
11
作者 任春华 孙林夫 韩敏 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2786-2800,共15页
基于第三方零部件多产业链业务协同云服务平台中汽车配件的销售现状,配件代理商没有充分考虑跨链销售、跨链调拨、多链销售等配件需求。为提高配件需求预测的准确率,首先提出一种优势矩阵(AM)结合轻梯度提升机(LightGBM)、门控循环神经... 基于第三方零部件多产业链业务协同云服务平台中汽车配件的销售现状,配件代理商没有充分考虑跨链销售、跨链调拨、多链销售等配件需求。为提高配件需求预测的准确率,首先提出一种优势矩阵(AM)结合轻梯度提升机(LightGBM)、门控循环神经网络(GRU)的组合预测模型(LightGBM_GRU_AM),该模型通过引入优势矩阵获取单个模型的最优权重系数,通过加权后的组合模型进行需求预测。考虑到组合模型中某时刻子模型的预测效果优于组合模型,为进一步提高预测的准确率,设计了一种基于LightGBM、GRU和LightGBM_GRU_AM的半组合预测模型,该模型采用子模型优选策略,在训练过程中利用最小绝对误差建立子模型分类标签,以特征提取和分类回归树建立子模型选取规则,根据数据特征采用不同的子模型进行预测,集成不同时刻的预测值形成最终的需求预测。最后集成第三方云平台中多链配件销售和配件相关售后服务数据进行算例分析,相比其他7种预测模型,提出的2种预测模型不但能有效降低预测误差,而且半组合预测模型更有优势,同时也为配件代理商提供采购决策支持。 展开更多
关键词 汽车配件 多价值链 轻梯度提升机 门控循环神经网络 优势矩阵 组合预测模型 半组合预测模型 子模型优选 需求预测
下载PDF
ABAFN:面向多模态的方面级情感分析模型 被引量:9
12
作者 刘路路 杨燕 王杰 《计算机工程与应用》 CSCD 北大核心 2022年第10期193-199,共7页
随着互联网的不断发展,面向电商产品的用户评论日益增加。研究这些用户评论的情感导向,对于指导产品的更新迭代具有重要意义。以往的方面级情感分析任务通常只涉及文本模态,然而用户的评论数据一般不仅包括纯文本,还包括大量的图文数据... 随着互联网的不断发展,面向电商产品的用户评论日益增加。研究这些用户评论的情感导向,对于指导产品的更新迭代具有重要意义。以往的方面级情感分析任务通常只涉及文本模态,然而用户的评论数据一般不仅包括纯文本,还包括大量的图文数据。针对这种包括文本和图片的多模态数据,提出了一种新的方面级多模态情感分析模型ABAFN(aspect-based attention and fusion network)。模型结合预训练语言模型BERT和双向长短时记忆网络来获得文本和方面词的上下文表示,同时利用预训练残差网络ResNet提取图片特征生成视觉表示;利用注意力机制基于方面词对上下文表示和视觉表示进行加权;将两个模态加权后的表示级联融合执行情感标签分类任务。在Multi-ZOL数据集上的实验表明,ABAFN模型的性能超过了目前已知文献的结果。 展开更多
关键词 方面级多模态情感分析 BERT 双向长短时记忆网络 ResNet 注意力机制
下载PDF
面向工程数据检索的ElasticSearch索引优化策略 被引量:9
13
作者 许贤慧 王淑营 曾文驱 《计算机与现代化》 2022年第2期79-84,119,共7页
随着生产制造业的发展,各行业在生产制造的过程中都会产生大量的工程数据,现代工程领域的数据检索需求要求能够通过关键字快速且准确检索出相应的结果,利用ElasticSearch可以实现工程数据的检索,但是其性能方面还有优化的空间。为了解... 随着生产制造业的发展,各行业在生产制造的过程中都会产生大量的工程数据,现代工程领域的数据检索需求要求能够通过关键字快速且准确检索出相应的结果,利用ElasticSearch可以实现工程数据的检索,但是其性能方面还有优化的空间。为了解决这个问题,本文对ElasticSearch的底层原理进行深入研究,在ElasticSearch的索引创建、索引分片以及索引段合并方面进行优化。首先对ElasticSearch的分词器进行修改并配置自定义词典,其次提出基于集群节点性能与索引数据量大小的索引分片策略,最后,根据节点性能对索引段合并的时机进行优化。通过基于地铁工程数据的检索进行实验,实验结果表明,改进的方法确实能够提高ElasticSearch的数据写入与查询性能。 展开更多
关键词 ElasticSearch全文搜索引擎 索引 分片 段合并 性能优化
下载PDF
工业机器人码垛数字孪生系统的研究与实现 被引量:7
14
作者 陈玉娇 曾诗雨 +1 位作者 和红杰 陈帆 《计算机集成制造系统》 EI CSCD 北大核心 2023年第6期1930-1940,共11页
为提高工业机器人码垛的智能化水平,将数字孪生技术与机器人码垛作业流程相结合,研究并设计了工业机器人码垛数字孪生系统。分析了码垛数字孪生系统架构,规划并设计了系统的功能模块和运行机制,阐述了工业机器人数字孪生系统数据集成模... 为提高工业机器人码垛的智能化水平,将数字孪生技术与机器人码垛作业流程相结合,研究并设计了工业机器人码垛数字孪生系统。分析了码垛数字孪生系统架构,规划并设计了系统的功能模块和运行机制,阐述了工业机器人数字孪生系统数据集成模块、虚拟场景构建模块、虚拟机器人码垛模块和可视化辅助服务模块的实现方法,融合真实码垛场景下的机器人作业数据,实现了对基于数字孪生技术的工业机器人码垛虚拟可视化仿真与策略优化的信息反馈。设计并开发了面向工业机器人码垛作业的数字孪生系统,以物理码垛场景数据为例,验证了本系统的有效性,为探索数字孪生技术在工业机器人智能码垛的应用进行了尝试。 展开更多
关键词 工业机器人 智能化 数字孪生技术 码垛场景
下载PDF
政民互通:构建政府和居民之间的双向信息通道 被引量:4
15
作者 郑宇 《大数据》 2024年第1期127-140,共14页
基层治理是国家治理体系的基石,对夯实国家安全和维护社会稳定有极其重大的意义。当前,基层治理也面临诸多挑战,尤其是居民与政府之间的信息互通问题,需要重点解决各部门多头采集、居民反复填报信息、基层治理工作庞杂多变、负担繁重等... 基层治理是国家治理体系的基石,对夯实国家安全和维护社会稳定有极其重大的意义。当前,基层治理也面临诸多挑战,尤其是居民与政府之间的信息互通问题,需要重点解决各部门多头采集、居民反复填报信息、基层治理工作庞杂多变、负担繁重等难题。针对这些挑战,以数据为中心,构建政民互通的信息通道,通过灵活配置、自由组合的方式来快速搭建各类基层治理应用,实现政府基层部门与居民之间的双向互联、通而不扰,基层治理工作精准高效开展,信息及时、多级共享,为基层工作者减负赋能,畅通和规范群众诉求表达、权益保障通道。同时,政民信息通道有助于形成数据资源体系,让数据和应用分离,为数据的要素化打下基础,支撑数字中国战略的落地。 展开更多
关键词 国家治理体系 社会治理 基层治理 政民互通 数据资源体系 数据要素
下载PDF
面向元余弦损失的少样本图像分类 被引量:3
16
作者 陶鹏 冯林 +2 位作者 杜彦东 龚勋 王俊 《中国图象图形学报》 CSCD 北大核心 2024年第2期506-519,共14页
目的 度量学习是少样本学习中一种简单且有效的方法,学习一个丰富、具有判别性和泛化性强的嵌入空间是度量学习方法实现优秀分类效果的关键。本文从样本自身的特征以及特征在嵌入空间中的分布出发,结合全局与局部数据增强实现了一种元... 目的 度量学习是少样本学习中一种简单且有效的方法,学习一个丰富、具有判别性和泛化性强的嵌入空间是度量学习方法实现优秀分类效果的关键。本文从样本自身的特征以及特征在嵌入空间中的分布出发,结合全局与局部数据增强实现了一种元余弦损失的少样本图像分类方法(a meta-cosine loss for few-shot image classification,AMCL-FSIC)。方法 首先,从数据自身特征出发,将全局与局部的数据增广方法结合起来,利于局部信息提供更具区别性和迁移性的信息,使训练模型更多关注图像的前景信息。同时,利用注意力机制结合全局与局部特征,以得到更丰富更具判别性的特征。其次,从样本特征在嵌入空间中的分布出发,提出一种元余弦损失(meta-cosine loss,MCL)函数,优化少样本图像分类模型。使用样本与类原型间相似性的差调整不同类的原型,扩大类间距,使模型测试新任务时类间距更加明显,提升模型的泛化能力。结果 分别在5个少样本经典数据集上进行了实验对比,在FC100(Few-shot Cifar100)和CUB(Caltech-UCSD Birds-200-2011)数据集上,本文方法均达到了目前最优分类效果;在MiniImageNet、TieredImageNet和Cifar100数据集上与对比模型的结果相当。同时,在MiniImageNet,CUB和Cifar100数据集上进行对比实验以验证MCL的有效性,结果证明提出的MCL提升了余弦分类器的分类效果。结论 本文方法能充分提取少样本图像分类任务中的图像特征,有效提升度量学习在少样本图像分类中的准确率。 展开更多
关键词 元学习 少样本学习(FSL) 度量学习 元余弦损失(MCL) 图像分类
原文传递
基于知识图谱的兴趣捕捉推荐算法 被引量:2
17
作者 金宇 陈红梅 罗川 《计算机科学》 CSCD 北大核心 2024年第1期133-142,共10页
知识图谱作为一种辅助信息,可以为推荐系统提供更多的上下文信息和语义关联信息,从而提高推荐的准确性和可解释性。通过将项目映射到知识图谱中,推荐系统可以将从知识图谱中学习到的外部知识注入到用户和项目的表示中,进而增强用户和项... 知识图谱作为一种辅助信息,可以为推荐系统提供更多的上下文信息和语义关联信息,从而提高推荐的准确性和可解释性。通过将项目映射到知识图谱中,推荐系统可以将从知识图谱中学习到的外部知识注入到用户和项目的表示中,进而增强用户和项目的表示。但在学习用户偏好时,基于图神经网络的知识图谱推荐主要通过项目实体利用知识图谱中的属性信息和关系信息等知识信息。由于用户节点并不与知识图谱直接相连,这就导致不同的关系信息和属性信息在语义上和用户偏好方面是独立的,缺乏关联。这表明,基于知识图谱的推荐难以根据知识图谱中的信息来准确捕获用户的细粒度偏好。因此,针对用户细粒度兴趣难以捕捉的问题,提出了一种基于知识图谱的兴趣捕捉推荐算法。该算法利用知识图谱中的关系和属性信息来学习用户的兴趣,并增强用户和项目的嵌入表示。为了充分利用知识图谱中的关系信息,设计了关系兴趣模块以学习用户对不同关系的细粒度兴趣。该模块将每个兴趣表示为知识图谱中关系向量的组合,并利用图卷积神经网络在用户项目图和知识图谱中传递用户兴趣以学习用户和项目的嵌入表示。此外,还设计了属性兴趣模块以学习用户对不同属性的细粒度兴趣。该模块采用切分嵌入的方法为用户和项目匹配与之相似的属性,并使用与关系兴趣模块中相似的方法进行消息传播。最终,在两个基准数据集上进行实验,实验结果验证了该方法的有效性和可行性。 展开更多
关键词 推荐算法 深度学习 知识图谱 图神经网络
下载PDF
面向复杂交通场景的道路目标检测方法 被引量:5
18
作者 盛博莹 侯进 +1 位作者 李嘉新 党辉 《计算机工程与应用》 CSCD 北大核心 2023年第15期87-96,共10页
针对复杂交通场景下小目标检测精度低,容易出现误检和漏检的问题,提出一种基于改进YOLOv5s的道路目标检测算法YOLOv5s-MRS。提出基于反馈机制的特征提取网络(RFP-PAN),增加浅层特征层与反馈连接并设计IASPP模块,充分融合不同尺度的特征... 针对复杂交通场景下小目标检测精度低,容易出现误检和漏检的问题,提出一种基于改进YOLOv5s的道路目标检测算法YOLOv5s-MRS。提出基于反馈机制的特征提取网络(RFP-PAN),增加浅层特征层与反馈连接并设计IASPP模块,充分融合不同尺度的特征信息,提升网络的特征融合能力;提出级联注意力机制(SECA),在通道和空间维度上聚焦重要特征,让算法关注更加有用的信息;利用Ghost模块的轻量化优势,降低算法的参数量、计算量和模型占用空间。实验结果表明,YOLOv5s-MRS算法在KITTI数据集和VisDrone2021 DET数据集上的检测精度分别达到了93.4%和40.8%,相比原始算法分别提高了1.6和8.6个百分点,模型大小为12.9 MB,在保证实时性的同时具有良好的检测精度,在一定程度上解决了小目标的漏检和误检问题。 展开更多
关键词 YOLOv5s 递归金字塔 注意力机制 GhostNet
下载PDF
基于交互注意力和图卷积网络的方面级情感分析 被引量:6
19
作者 王娅丽 张凡 +1 位作者 余增 李天瑞 《计算机科学》 CSCD 北大核心 2023年第4期196-203,共8页
方面级情感分析是细粒度情感分析中的一项关键任务,旨在预测一个句子中不同方面术语的情感倾向。针对目前结合图卷积网络的研究忽略方面术语本身的含义以及方面术语与上下文之间的交互的问题,文中提出了基于交互注意力和图卷积网络的模... 方面级情感分析是细粒度情感分析中的一项关键任务,旨在预测一个句子中不同方面术语的情感倾向。针对目前结合图卷积网络的研究忽略方面术语本身的含义以及方面术语与上下文之间的交互的问题,文中提出了基于交互注意力和图卷积网络的模型(Interactive Attention Graph Convolution Network,IAGCN)。该模型首先结合BiLSTM和修正动态权重层对上下文进行建模,其次在句法依存树上使用图卷积网络对句法信息进行编码,然后利用交互注意力机制学习上下文和方面术语中的注意力,重构上下文和方面术语的表示,最后通过softmax层获取给定方面术语的情感极性。与基线模型相比,所提模型在5个数据集中的准确率和F1值分别提高了0.56%~1.75%和1.34%~4.04%。同时,将预训练模型BERT应用到此任务中,相比基于GloVe的IAGCN模型,其准确率和F1值分别提高了1.47%~3.95%和2.59%~7.55%,模型效果有了进一步的提升。 展开更多
关键词 方面级情感分析 深度学习 图卷积网络 交互注意力机制 BERT
下载PDF
基于注意力的时空神经网络城市区域交通流量预测 被引量:7
20
作者 廖挥若 杨燕 《计算机应用研究》 CSCD 北大核心 2021年第10期2935-2940,共6页
可靠的交通流量预测在交通管理和公共安全方面具有重要意义。然而,这也是一件具有挑战性的任务,因为它易受到空间依赖性、时间依赖性以及一些额外因素(天气和突发事件等)的影响。现有的大部分工作只考虑了交通数据的部分属性,导致建模... 可靠的交通流量预测在交通管理和公共安全方面具有重要意义。然而,这也是一件具有挑战性的任务,因为它易受到空间依赖性、时间依赖性以及一些额外因素(天气和突发事件等)的影响。现有的大部分工作只考虑了交通数据的部分属性,导致建模不充分,预测性能不理想。因此,提出了一种新的端到端的深度学习模型——时空注意力卷积长短期记忆网络(ST-AttConvLSTM),用于交通流量的预测。ST-AttConvLSTM将整个模型分为三个分支进行建模,每个分支经过残差神经网络提取局部的空间特征,同时进一步结合天气等外部因素,再利用卷积长短时记忆网络(ConvLSTM)和注意力模型两种组件来挖掘流量的潜在规律,捕获时空维度上数据的关联性。使用北京市和纽约市两个真实的移动数据集来评估提出的方法,实验结果表明,该方法比知名的基准方法有更高的预测精度。 展开更多
关键词 交通流量预测 深度学习 卷积长短时记忆网络 注意力模型
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部