根据区域滑坡特点,针对不同类型滑坡的自身特征分别建立指标评价体系,能够使滑坡易发性评价的过程更加科学准确。以三峡库区万州区内滑坡为例,首先,基于对地质环境、滑坡空间分布及自身特征的分析,将全区滑坡分为陡倾角地层滑坡和缓倾...根据区域滑坡特点,针对不同类型滑坡的自身特征分别建立指标评价体系,能够使滑坡易发性评价的过程更加科学准确。以三峡库区万州区内滑坡为例,首先,基于对地质环境、滑坡空间分布及自身特征的分析,将全区滑坡分为陡倾角地层滑坡和缓倾角地层滑坡。其次,获取12种指标因子(高差、坡度、坡向、平面曲率、剖面曲率、地层岩性、水系、地质构造、公路、地层倾角、降雨、含蒙脱石软弱夹层厚度)构成基本评价体系。然后提出基于逻辑回归(logistic regression,LR)–模糊层次分析(fuzzy analytical hierarchy process,FAHP)方法(LR-FAHP)的加权频率比模型(weighted frequency ratio model,WFR),通过对指标因子的重要性进行排序,实现各指标因子权重的定量计算,从而建立不同类型滑坡的评价指标体系,再基于GIS平台实现全区滑坡灾害的易发性等级预测。结果表明:与单一的LR,FAHP和FR三种模型相比,WFR模型能将滑坡易发性评价精度提升4%~9%,表明LR-FAHP是一种定量计算指标因子权重的有效方法;同时,基于滑坡分类的WFR模型的易发性评价成功率为79.2%,预测率为79.6%,均优于未进行滑坡分类的WFR模型,为建立评价指标体系和区域滑坡易发性评价提供了可靠途径。展开更多
区域滑坡易发性研究对地质灾害风险管理具有重要意义.以往研究中,将多元统计模型与机器学习方法相结合用于滑坡易发性评价的研究较少.以三峡库区万州区为例,首先选取9种指标因子(坡度、坡向、剖面曲率、地表纹理、地层岩性、斜坡结构、...区域滑坡易发性研究对地质灾害风险管理具有重要意义.以往研究中,将多元统计模型与机器学习方法相结合用于滑坡易发性评价的研究较少.以三峡库区万州区为例,首先选取9种指标因子(坡度、坡向、剖面曲率、地表纹理、地层岩性、斜坡结构、地质构造、水系分布及土地利用类型)作为滑坡易发性评价指标.基于证据权模型(weights of evidence,WOE)计算得到的对比度和滑坡面积比与分级面积比的相对大小,对各指标因子进行状态分级;再利用粒子群法优化的BP神经网络模型(PSO-BP)得到各指标因子权重.综合两种模型确定的状态分级权重和指标因子权重(WOE-BP)计算滑坡易发性指数(landslide susceptibility index,LSI),基于GIS平台得到全区滑坡易发性分区图.结果表明:水系、地层岩性和地质构造是影响万州区滑坡发育的主要指标因子;WOE-BP模型的预测精度为80.8%,优于WOE模型的73.1%和BP神经网络模型的71.6%,可为定量计算指标因子权重和优化滑坡易发性评价提供有效途径.展开更多
文摘根据区域滑坡特点,针对不同类型滑坡的自身特征分别建立指标评价体系,能够使滑坡易发性评价的过程更加科学准确。以三峡库区万州区内滑坡为例,首先,基于对地质环境、滑坡空间分布及自身特征的分析,将全区滑坡分为陡倾角地层滑坡和缓倾角地层滑坡。其次,获取12种指标因子(高差、坡度、坡向、平面曲率、剖面曲率、地层岩性、水系、地质构造、公路、地层倾角、降雨、含蒙脱石软弱夹层厚度)构成基本评价体系。然后提出基于逻辑回归(logistic regression,LR)–模糊层次分析(fuzzy analytical hierarchy process,FAHP)方法(LR-FAHP)的加权频率比模型(weighted frequency ratio model,WFR),通过对指标因子的重要性进行排序,实现各指标因子权重的定量计算,从而建立不同类型滑坡的评价指标体系,再基于GIS平台实现全区滑坡灾害的易发性等级预测。结果表明:与单一的LR,FAHP和FR三种模型相比,WFR模型能将滑坡易发性评价精度提升4%~9%,表明LR-FAHP是一种定量计算指标因子权重的有效方法;同时,基于滑坡分类的WFR模型的易发性评价成功率为79.2%,预测率为79.6%,均优于未进行滑坡分类的WFR模型,为建立评价指标体系和区域滑坡易发性评价提供了可靠途径。
文摘区域滑坡易发性研究对地质灾害风险管理具有重要意义.以往研究中,将多元统计模型与机器学习方法相结合用于滑坡易发性评价的研究较少.以三峡库区万州区为例,首先选取9种指标因子(坡度、坡向、剖面曲率、地表纹理、地层岩性、斜坡结构、地质构造、水系分布及土地利用类型)作为滑坡易发性评价指标.基于证据权模型(weights of evidence,WOE)计算得到的对比度和滑坡面积比与分级面积比的相对大小,对各指标因子进行状态分级;再利用粒子群法优化的BP神经网络模型(PSO-BP)得到各指标因子权重.综合两种模型确定的状态分级权重和指标因子权重(WOE-BP)计算滑坡易发性指数(landslide susceptibility index,LSI),基于GIS平台得到全区滑坡易发性分区图.结果表明:水系、地层岩性和地质构造是影响万州区滑坡发育的主要指标因子;WOE-BP模型的预测精度为80.8%,优于WOE模型的73.1%和BP神经网络模型的71.6%,可为定量计算指标因子权重和优化滑坡易发性评价提供有效途径.