文摘作为一种新型的非接触式检测方法,基于红外热成像技术的机载电路板故障模式诊断方法受到越来越多的关注。本文针对传统基于红外热图的电路板故障检测算法中存在的缺陷,提出一种结合红外图像分割、热阻网络、支持向量机SVM(Support Vector Machine)与D-S证据理论的故障检测算法。首先,通过红外图像分割完成目标芯片区域温度提取,应用热阻网络模型对目标区域温度信息进行优化;其次,提取温度信息特征向量分别输入对应的初级SVM诊断模块,输出各故障模式的加权基本概率分配值BPA(Basic Probability Assignment);最后,应用D-S证据理论对各证据体加权BPA进行数据融合,输出融合后的故障诊断结果。实验结果表明,本文算法加强了有效证据体对诊断结果的正面影响,削弱了无效证据体的负面影响,大幅度提高了机载电路板故障模式诊断准确度。