DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in...DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.展开更多
Restitution of normal fat absorption in exocrine pancreatic insufficiency remains an elusive goal. Although many patients achieve satisfactory clinical results with enzyme therapy, few experience normalization of fat ...Restitution of normal fat absorption in exocrine pancreatic insufficiency remains an elusive goal. Although many patients achieve satisfactory clinical results with enzyme therapy, few experience normalization of fat absorption, and many, if not most, will require individualized therapy. Increasing the quantity of lipase administered rarely eliminates steatorrhea but increases the cost of therapy. Enteric coated enzyme microbead formulations tend to separate from nutrients in the stomach precluding coordinated emptying of enzymes and nutrients. Unprotected enzymes mix well and empty with nutrients but are inactivated at pH 4 or below. We describe approaches for improving the results of enzyme therapy including changing to, or adding, a different product, adding non-enteric coated enzymes,(e.g., giving unprotected enzymes at the start of the mealand acid-protected formulations later), use of antisecretory drugs and/or antacids, and changing the timing of enzyme administration. Because considerable lipid is emptied in the first postprandial hour, it is prudent to start therapy with enteric coated microbead prior to the meal so that some enzymes are available during that first hour. Patients with hyperacidity may benefit from adjuvant antisecretory therapy to reduce the duodenal acid load and possibly also sodium bicarbonate to prevent duodenal acidity. Comparative studies of clinical effectiveness of different formulations as well as the characteristics of dispersion, emptying, and dissolution of enteric-coated microspheres of different diameter and density are needed; many such studies have been completed but not yet made public. We discuss the history of pancreatic enzyme therapy and describe current use of modern preparations, approaches to overcoming unsatisfactory clinical responses, as well as studies needed to be able to provide reliably effective therapy.展开更多
Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques...Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens, composed of subwavelength nanostructures that locally control light waves, offers a disruptive path for small-scale imaging systems. Recent advances in the design and nanofabrication of dielectric metalenses have led to some high-performance practical optical systems. This review outlines the exciting developments in the aforementioned area whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems. After a brief introduction to the fundamental physics of dielectric metalenses, the progress and challenges in terms of the typical performances are introduced. The supplementary discussion on the common challenges hindering further development is also presented, including the limitations of the conventional design methods, difficulties in scaling up, and device integration. Furthermore, the potential approaches to address the existing challenges are also deliberated.展开更多
It has been almost 50 years since the term“brain–computer interface”(BCI)was first proposed by Jacques J.Vidal in 1973[1].Unlike traditional electronic interfaces that transmit nonliving information between devices...It has been almost 50 years since the term“brain–computer interface”(BCI)was first proposed by Jacques J.Vidal in 1973[1].Unlike traditional electronic interfaces that transmit nonliving information between devices,BCIs set up a communication bridge between a living brain and nonliving devices.Technically speaking,a BCI is a system that measures brain activity and converts it into the artificial outputs that replace,restore,enhance,supplement,or improve the natural central nervous system outputs[2].At present,electroencephalography(EEG)is the most commonly used brain signal for BCIs.展开更多
Mitochondria,with their intricate networks of functions and information processing,are pivotal in both health regulation and disease progression.Particularly,mitochondrial dysfunctions are identified in many common pa...Mitochondria,with their intricate networks of functions and information processing,are pivotal in both health regulation and disease progression.Particularly,mitochondrial dysfunctions are identified in many common pathologies,including cardiovascular diseases,neurodegeneration,metabolic syndrome,and cancer.However,the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases.Nonetheless,these complexities do not prevent mitochondria from being among the most important therapeutic targets.In recent years,strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials.Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria,has shown promise in preclinical trials of various diseases.Mitochondrial components,including mtDNA,mitochondria-located microRNA,and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries.Here,we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases.We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies,as well as the clinical translational situation of related pharmacology agents.Finally,this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.展开更多
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) p...Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.展开更多
The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drill...The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.展开更多
基金the National Natural Science Foundation of China(62271485,61903363,U1811463,62103411,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.
基金Supported by The Office of Research and Development Medical Research Service Department of Veterans Affairs,Public Health Service grants No.DK067366 and No.DK56338 which funds the Texas Medical Center Digestive Diseases Center
文摘Restitution of normal fat absorption in exocrine pancreatic insufficiency remains an elusive goal. Although many patients achieve satisfactory clinical results with enzyme therapy, few experience normalization of fat absorption, and many, if not most, will require individualized therapy. Increasing the quantity of lipase administered rarely eliminates steatorrhea but increases the cost of therapy. Enteric coated enzyme microbead formulations tend to separate from nutrients in the stomach precluding coordinated emptying of enzymes and nutrients. Unprotected enzymes mix well and empty with nutrients but are inactivated at pH 4 or below. We describe approaches for improving the results of enzyme therapy including changing to, or adding, a different product, adding non-enteric coated enzymes,(e.g., giving unprotected enzymes at the start of the mealand acid-protected formulations later), use of antisecretory drugs and/or antacids, and changing the timing of enzyme administration. Because considerable lipid is emptied in the first postprandial hour, it is prudent to start therapy with enteric coated microbead prior to the meal so that some enzymes are available during that first hour. Patients with hyperacidity may benefit from adjuvant antisecretory therapy to reduce the duodenal acid load and possibly also sodium bicarbonate to prevent duodenal acidity. Comparative studies of clinical effectiveness of different formulations as well as the characteristics of dispersion, emptying, and dissolution of enteric-coated microspheres of different diameter and density are needed; many such studies have been completed but not yet made public. We discuss the history of pancreatic enzyme therapy and describe current use of modern preparations, approaches to overcoming unsatisfactory clinical responses, as well as studies needed to be able to provide reliably effective therapy.
基金the National Natural Science Foundation of China(Grant Nos.62105120,12104182,52005175,5211101255)Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515110971)Youth Innovation Funds of Jihua Laboratory(Grant Nos.X220221XQ220,X201321XQ200).
文摘Lightweight, miniaturized optical imaging systems are vastly anticipated in these fields of aerospace exploration, industrial vision, consumer electronics, and medical imaging. However, conventional optical techniques are intricate to downscale as refractive lenses mostly rely on phase accumulation. Metalens, composed of subwavelength nanostructures that locally control light waves, offers a disruptive path for small-scale imaging systems. Recent advances in the design and nanofabrication of dielectric metalenses have led to some high-performance practical optical systems. This review outlines the exciting developments in the aforementioned area whilst highlighting the challenges of using dielectric metalenses to replace conventional optics in miniature optical systems. After a brief introduction to the fundamental physics of dielectric metalenses, the progress and challenges in terms of the typical performances are introduced. The supplementary discussion on the common challenges hindering further development is also presented, including the limitations of the conventional design methods, difficulties in scaling up, and device integration. Furthermore, the potential approaches to address the existing challenges are also deliberated.
基金We appreciate the financial support from the National Key Research and Development Program of China(2017YFB1300300)the National Natural Science Foundation of China(62122059,81925020,61976152,and 81630051)the Young Elite Scientist Sponsorship Program by CAST(2018QNRC001).
文摘It has been almost 50 years since the term“brain–computer interface”(BCI)was first proposed by Jacques J.Vidal in 1973[1].Unlike traditional electronic interfaces that transmit nonliving information between devices,BCIs set up a communication bridge between a living brain and nonliving devices.Technically speaking,a BCI is a system that measures brain activity and converts it into the artificial outputs that replace,restore,enhance,supplement,or improve the natural central nervous system outputs[2].At present,electroencephalography(EEG)is the most commonly used brain signal for BCIs.
基金supported by the National Natural Science Foundation of China(82002339 to Junjie Gao)Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System(BJ1-9000-22-4002).
文摘Mitochondria,with their intricate networks of functions and information processing,are pivotal in both health regulation and disease progression.Particularly,mitochondrial dysfunctions are identified in many common pathologies,including cardiovascular diseases,neurodegeneration,metabolic syndrome,and cancer.However,the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases.Nonetheless,these complexities do not prevent mitochondria from being among the most important therapeutic targets.In recent years,strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials.Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria,has shown promise in preclinical trials of various diseases.Mitochondrial components,including mtDNA,mitochondria-located microRNA,and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries.Here,we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases.We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies,as well as the clinical translational situation of related pharmacology agents.Finally,this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
基金supported by the National Natural Science Foundation of China (21273221)the National High Technology Research and Development Program of China (863 Program, 2011AA03A406)
文摘Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.
基金financially supported by the Fundamental Research Funds for the Central Universities(2572016CB11 and 2572014CB35)Natural Science Foundation of Heilongjiang Province(F2015036 and QC2014C010)948 Project(2014-4-78)
文摘The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.