AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto dete...AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto detect the expression of p42/44MAPK, p-Stat3,c-fos and c-jun proteins in 55 hepatocellularcarcinomas (HCC) and their surrounding livertissues.RESULTS The positive rates and expressionlevels of p42/44MAPK, p-Stat3, c-fos and c-junproteins in HCCs were significantly higher thanthose in pericarcinomatous liver tissues (PCLT).A positive correlation was observed between theexpression of p42/44MAPK and c-fos proteins, andbetween p-Stat3 and c-jun, but there was nosignificant correlation between p42/44MAPK and p-Stat3 in HCCs and their surrounding livertissues.CONCLUSION The abnormalities of Ras/Rat/MAPK and JAKs/ Stat3 cascade reaction maycontribute to malignant transformation ofhepatocytes. Hepatocytes which are positive forp42/ 44MAPK, c-fos or c-jun proteins may bepotential malignant pre-cancerous cells.Activation of MAPK and Stat3 proteins may be anearly event in hepatocellular carcinogenesis.展开更多
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this ...Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.展开更多
The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell ...The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.展开更多
c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studie...c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper(bZIP)transcription factor that acts as homo-or heterodimer,binding to DNA and regulating gene transcription.Later on,it was shown that extracellular signals can induce post-translational modifications of c-Jun,resulting in altered transcriptional activity and target gene expression.More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk,amplify and integrate different signals for tissue development and disease.One example of such scheme is the autocrine amplification loop,in which signal-induced AP-1 activates the c-Jun gene promoter,while increased c-Jun expression feedbacks to potentiate AP-1 activity.Another example of such scheme,based on recent characterization of gene knockout mice,is that c-Jun integrates signals of several developmental pathways,including EGFR-ERK,EGFR-RhoA-ROCK,and activin B-MAP3K1-JNK for embryonic eyelid closure.After more than two decades of extensive research,c-Jun remains at the center stage of a molecular network with mysterious functional properties,some of which are yet to be discovered.In this article,we will provide a brief historical overview of studies on c-Jun regulation and function,and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.展开更多
Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal can...Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.展开更多
Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancrea...Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pan-creatitis characterized by marked stroma formation with a high number of infiltrating granulocytes(such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells(PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in pro-moting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways(i.e., Transforming growth factor-β/SMAD, mitogen--activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin(IL)-1, IL-1β, IL-6, IL--8 IL-10, IL-18, IL--33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.展开更多
Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytok...Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytokine production. However, precise mechanisms on how C. trachomatis triggers this production, and which protein(s) stimulate inflammatory cytokines remains unknown. In the present study, the C. trachomatis pORF5 protein induced tumor necrosis factor alpha (TNF-a), interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) in dose and time-dependent manners in the THP-1 human monocyte cell line. We found that intracellular p38/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)/MAPK signaling pathways were required for the induction of TNF- a, IL-1β and IL-8. Blockade of toll-like receptor 2 (TLR2) signaling reduced induction levels of TNF-a, IL-8 and IL-1β. We concluded that the C. trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si展开更多
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has sho...The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MAPK genes have been Identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MAPK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MAPK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signaling pathway in rice crops for the Improvement of agronomically important traits.展开更多
Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On th...Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On the other hand, ROS overproduction is detrimental for proper plant growth and development, indicating that the regulation of an appropriate redox balance is essential for plants. ROS homeostasis in plants involves the mitogen-activated protein kinase (MAPK) pathway consisting of the MAPK kinase kinase MEKK1 and the MAPK MPK4. Phenotypic and molecular analysis revealed that the MAPK kinases MKK1 and MKK2 are part of a cascade, regulating ROS and salicylic acid (SA) accumulation. Gene expression analysis shows that of 32 transcription factors reported to be highly responsive to multiple ROS-inducing conditions, 20 are regulated by the MEKK1, predominantly via the MEKK1-MKK1/2-MPK4 pathway. However, MEKK1 also functions on other as yet unknown pathways and part of the MEKK1-dependent MPK4 responses are regulated independently of MKK1 and MKK2. Overall, this analysis emphasizes the central role of this MAPK cascade in oxidative stress signalling, but also indicates the high level of complexity revealed by this signalling network.展开更多
Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on...Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on tetrachloromethane induced liver fibrosis in rats and its modulation on the p38 MAPK signalling pathway. Methods One hundred and twenty healthy male Sprague-Dawley rats were randomly assigned to six groups: normal (n=20), induced fibrosis (n=20), colchicine (n=20) and three treatment groups of oxymatrine (n=20x3). We obesrved changes in deposition of collagen, hyaluronic acid (HA), laminin (LN), collagen type IV (CIV), procollagen III (PCIll) and hydroxyproline (Hyp), a-smooth muscle actin (α-SMA) and phosphor-p38 (pp38). Results The relative indicators of changes in histopathology, HA, LN, CIV, PCIII, Hyp, a-SMA and pp38 were raised significantly in the induced fibrosis group (P〈0.01 vs normal group). The semiquantitative hepatic fibrosis staging scores of middle dose group and high dose group were decreased (P 〈0.05 and P 〈0.01 respectively vs the induced fibrosis group), as was the average area of collagen in rats' liver, the concentrations of serum HA, LN, CIV, PCIII and liver tissue homogenate Hyp. The gene expression of α-SMA mRNA was considerably decreased in the treated animals, as was the protein espression of pp38 protein. Conclusions Oxymatrine is effective in reducing the production and deposition of collagen in the liver tissue of experimental rats in ways which relate to modulating the fibrogenic signal transduction via p38 MAPK signalling pathway.展开更多
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional ...Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.展开更多
Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1...Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV 1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expres- sion in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain. Methods A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the ex- pression of TRPV1 was assessed after treatment with 100 ~tmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N- terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibi- tor]. Results In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 p^mol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression. Conclusion Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral after- ents plays a role in bone cancer pain.展开更多
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p...AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was fo展开更多
We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly ...We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.展开更多
Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gast...Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gastric ischemia-reperfusion (GI-R). And we elucidated the molecular mechanisms of the protection of PVN from GI-R injuries. Methods Sprague-Dawley rats were divided randomly into 4 groups: Group I, the sham-operated GI-R control group; Group II, the sham-operated electrical stimulations to PVN + sham-operated GI-R control group; Group III, the GI-R group; and Group IV, the electrical stimulations to PVN + GI-R group. In all of the experiments, the PVN was stimulated prior to the induction of GI-R. The GI-R model was established by clamping the celiac artery for 30 minutes to induce ischemia and then was released to allow reperfusion for 30 minutes, 1 hour, 3 hours and 6 hours, respectively. The gastric mucosal cellular apoptosis, proliferation, and the expression and activity of MAPKs protein were observed by immunohistochemistry and Western blotting, respectively. Results Compared with the GI-R group, the application of electrical stimulations in the PVN significantly depressed gastric mucosal cellular apoptosis and enhanced gastric mucosal cellular proliferation following the 30-minute, 1-hour and 3-hour intervals of reperfusion; it also promoted the activation of p-ERK during the early phase of reperfusion but inhibited the activation of p-JNK1/2 and p-p38 following the 30-minute, 1-hour and 3-hour intervals of reperfusion. Conclusions The protection of PVN against GI-R injuries may attribute to the inhibition of apoptosis and the promotion of the proliferation of gastric mucosal cells during GI-R. This protective effect is mediated by activating the ERK pathway and depressing the JNK, the JNK. p38 MAPK oathwavs of the oastric mucosal cells.展开更多
Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cyt...Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory efibcts of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 pmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P〈0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P〈0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer.展开更多
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a co...It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a complex and heterogeneous tumor with several genomic mutations,it usually develops in the context of chronic liver damage and inflammation,suggesting that understanding the mechanism(s) of inflammation-mediated hepatocarcinogenesis is essential for the treatment and prevention of HCC.Chronic liver damage induces a persistent cycle of necroinflammation and hepatocyte regeneration,resulting in genetic mutations in hepatocytes and expansion of initiated cells,eventually leading to HCC development.Recently,several inflammation-and stress-related signaling pathways have been identified as key players in these processes,which include the nuclear factor B,signal transducer and activator of transcription,and stress-activated mitogen-activated protein kinase pathways.Although these pathways may suggest potential therapeutic targets,they have a wide range of functions and complex crosstalk occurs among them.This review focuses on recent advances in our understanding of the roles of these signaling pathways in hepatocarcinogenesis.展开更多
Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and ...Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and the intervention effect of soothing Gan(Liver) and invigorating Pi(Spleen) recipes on this pathway. Methods: After 1 week of acclimatization, 120 Sprague-Dawley male rats were randomly divided into 8 groups using a random number table(n=15 per group): normal group, model group, low-dose Chaihu Shugan Powder(柴胡疏肝散, CHSG) group(3.2 g/kg), high-dose CHSG group(9.6 g/kg), low-dose Shenling Baizhu Powder(参苓白术散, SLBZ) group(10 g/kg), high-dose SLBZ(30 g/kg) group, and low-and highdose integrated recipe(L-IR, H-IR) groups. All rats in the model and treatment groups were fed with a high-fat diet(HFD). The treatments were administrated by gastrogavage once daily and lasted for 26 weeks. The liver tissues were detected with hematoxylin-eosin(HE) and oil red O staining. Levels of liver lipids, serum lipids and transaminases were measured. KCs were isolated from the livers of rats to evaluate the mRNA expressions of TLR4 and p38 MAPK by real-time fluorescence quantitative polymerase chain reaction, and proteins expressions of TLR4, p-p38 MAPK and p38 MAPK by Western blot. Levels of inflammatory cytokines including tumor necrosis factor α(TNF-α), interleukin(IL)-1 and IL-6 in KCs were measured by enzyme-linked immunosorbent assay. Results: After 26 weeks of HFD feeding, HE and oil red O staining showed that the NASH model rats successfully reproduced typical pathogenesis and histopathological features. Compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, serum levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol, and aspartate aminotransferase as well as TC and TG levels in liver tissues, and significant decrease in serum level of high-density lipoprotein cholesterol(P<0.05 or P<0.01), whi展开更多
文摘AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto detect the expression of p42/44MAPK, p-Stat3,c-fos and c-jun proteins in 55 hepatocellularcarcinomas (HCC) and their surrounding livertissues.RESULTS The positive rates and expressionlevels of p42/44MAPK, p-Stat3, c-fos and c-junproteins in HCCs were significantly higher thanthose in pericarcinomatous liver tissues (PCLT).A positive correlation was observed between theexpression of p42/44MAPK and c-fos proteins, andbetween p-Stat3 and c-jun, but there was nosignificant correlation between p42/44MAPK and p-Stat3 in HCCs and their surrounding livertissues.CONCLUSION The abnormalities of Ras/Rat/MAPK and JAKs/ Stat3 cascade reaction maycontribute to malignant transformation ofhepatocytes. Hepatocytes which are positive forp42/ 44MAPK, c-fos or c-jun proteins may bepotential malignant pre-cancerous cells.Activation of MAPK and Stat3 proteins may be anearly event in hepatocellular carcinogenesis.
文摘Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery.Understanding the mechanisms of liver ischemia reperfusion injury(IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation,as well as expanding the potential pool of usable donor grafts.The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes,increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis.Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury.IRI involves a complex interplay between neutrophils,natural killer T-cells cells,CD4+ T cell subtypes,cytokines,nitric oxide synthases,haem oxygenase-1,survival kinases such as the signal transducer and activator of transcription,Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways.Transgenic animals,particularly genetic knockout models,have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies.Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein.This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI.
文摘The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
文摘c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper(bZIP)transcription factor that acts as homo-or heterodimer,binding to DNA and regulating gene transcription.Later on,it was shown that extracellular signals can induce post-translational modifications of c-Jun,resulting in altered transcriptional activity and target gene expression.More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk,amplify and integrate different signals for tissue development and disease.One example of such scheme is the autocrine amplification loop,in which signal-induced AP-1 activates the c-Jun gene promoter,while increased c-Jun expression feedbacks to potentiate AP-1 activity.Another example of such scheme,based on recent characterization of gene knockout mice,is that c-Jun integrates signals of several developmental pathways,including EGFR-ERK,EGFR-RhoA-ROCK,and activin B-MAP3K1-JNK for embryonic eyelid closure.After more than two decades of extensive research,c-Jun remains at the center stage of a molecular network with mysterious functional properties,some of which are yet to be discovered.In this article,we will provide a brief historical overview of studies on c-Jun regulation and function,and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.
基金financially supported by National Natural Science Foundation of China(Nos.81302794,81071841,81102853)the Study of Marsdenia tenacissima extract(MTE):Study on quality control of antitumor traditional Chinese medicine Xiao-Ai-Ping injection(No.2011ZX09201-201)
文摘Marsdenia tenacissima extract(MTE, trade name: Xiao-Ai-Ping injection) is an extract of a single Chinese plant medicine. It has been used for the treatment of cancer in China for decades, especially for esophageal cancer and other cancers in the digestive tract. In the present study, the potential mechanism for MTE's activity in esophageal cancer was explored. The effects of MTE on the proliferation of human esophageal cancer cells(KYSE150 and Eca-109) were investigated by the MTT assay, the Brd U(bromodeoxyuridine) incorporation immunofluorescence assay, and flow cytometric analysis. MTE inhibited cell proliferation through inducing G0/G1 cell cycle arrest in KYSE150 and Eca-109. Western blot analysis was employed to determine protein levels in the MTE treated cells. Compared with the control cells, the expression levels of the cell cycle regulatory proteins cyclin D1/D2/D3, cyclin E1, CDK2/4/6(CDK: cyclin dependent kinase), and p-Rb were decreased significantly in the cells treated with MTE at 40 mg·m L-1. In addition, MTE had an inhibitory effect on the MAPK(mitogen-activated protein kinase) signal transduction pathway, including ERK(extracellular signal-regulated kinase), JNK(c-Jun N-terminal kinase), and p38 MAPK. Moreover, MTE showed little additional effects on the regulation of cyclin D1/D3, CDK4/6, and p-Rb when the ERK pathway was already inhibited by the specific ERK inhibitor U0126. In conclusion, these data suggest that MTE inhibits human esophageal cancer cell proliferation through regulation of cell cycle regulatory proteins and the MAPK signaling pathways, which is probably mediated by the inhibition of ERK activation.
基金Supported by National Institutes of Health,Nos.R01 DK067255 and R01 AI080581
文摘Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pan-creatitis characterized by marked stroma formation with a high number of infiltrating granulocytes(such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells(PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in pro-moting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways(i.e., Transforming growth factor-β/SMAD, mitogen--activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin(IL)-1, IL-1β, IL-6, IL--8 IL-10, IL-18, IL--33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.
基金supported by the National Natural Science Foundation of China(30970165,81102230)Team Project for the Technology Innovation of Higher Education of Hunan Province,China,2010
文摘Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytokine production. However, precise mechanisms on how C. trachomatis triggers this production, and which protein(s) stimulate inflammatory cytokines remains unknown. In the present study, the C. trachomatis pORF5 protein induced tumor necrosis factor alpha (TNF-a), interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) in dose and time-dependent manners in the THP-1 human monocyte cell line. We found that intracellular p38/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)/MAPK signaling pathways were required for the induction of TNF- a, IL-1β and IL-8. Blockade of toll-like receptor 2 (TLR2) signaling reduced induction levels of TNF-a, IL-8 and IL-1β. We concluded that the C. trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si
基金Supported by the Linkage Program between United States Agency for International Development and International Rice Research Institute. Publication of this paper is supported by the National Natural Science Foundation of China (30624808).
文摘The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MAPK genes have been Identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MAPK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MAPK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signaling pathway in rice crops for the Improvement of agronomically important traits.
文摘Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On the other hand, ROS overproduction is detrimental for proper plant growth and development, indicating that the regulation of an appropriate redox balance is essential for plants. ROS homeostasis in plants involves the mitogen-activated protein kinase (MAPK) pathway consisting of the MAPK kinase kinase MEKK1 and the MAPK MPK4. Phenotypic and molecular analysis revealed that the MAPK kinases MKK1 and MKK2 are part of a cascade, regulating ROS and salicylic acid (SA) accumulation. Gene expression analysis shows that of 32 transcription factors reported to be highly responsive to multiple ROS-inducing conditions, 20 are regulated by the MEKK1, predominantly via the MEKK1-MKK1/2-MPK4 pathway. However, MEKK1 also functions on other as yet unknown pathways and part of the MEKK1-dependent MPK4 responses are regulated independently of MKK1 and MKK2. Overall, this analysis emphasizes the central role of this MAPK cascade in oxidative stress signalling, but also indicates the high level of complexity revealed by this signalling network.
文摘Background Recent studies have suggested that p38 mitogen-activated protein kinases (MAPK) signalling pathway plays an important role in hepatic fibrosis. This study explored the antifibrotic effect of oxymatrine on tetrachloromethane induced liver fibrosis in rats and its modulation on the p38 MAPK signalling pathway. Methods One hundred and twenty healthy male Sprague-Dawley rats were randomly assigned to six groups: normal (n=20), induced fibrosis (n=20), colchicine (n=20) and three treatment groups of oxymatrine (n=20x3). We obesrved changes in deposition of collagen, hyaluronic acid (HA), laminin (LN), collagen type IV (CIV), procollagen III (PCIll) and hydroxyproline (Hyp), a-smooth muscle actin (α-SMA) and phosphor-p38 (pp38). Results The relative indicators of changes in histopathology, HA, LN, CIV, PCIII, Hyp, a-SMA and pp38 were raised significantly in the induced fibrosis group (P〈0.01 vs normal group). The semiquantitative hepatic fibrosis staging scores of middle dose group and high dose group were decreased (P 〈0.05 and P 〈0.01 respectively vs the induced fibrosis group), as was the average area of collagen in rats' liver, the concentrations of serum HA, LN, CIV, PCIII and liver tissue homogenate Hyp. The gene expression of α-SMA mRNA was considerably decreased in the treated animals, as was the protein espression of pp38 protein. Conclusions Oxymatrine is effective in reducing the production and deposition of collagen in the liver tissue of experimental rats in ways which relate to modulating the fibrogenic signal transduction via p38 MAPK signalling pathway.
基金Supported by Italian Association for Cancer Research(AIRC)fellowship(to Grossi V)Italian Foundation for Cancer Research(FIRC)fellowships(to Peserico A and Tezil T)+1 种基金Investigator Grant 2010 No.IG10177 to Simone C from the Italian Association for Cancer Research(AIRC)FIRB"Futuro in Ricerca"RBFR12VP3Q_003(to Simone C)from the Italian MIUR
文摘Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
基金supported by grants from the National Natural Science Foundation of China (81070893, 81171042 and 31171063)Beijing Municipal Commission of Education "Grants for Outstanding Ph.D. Program Tutors"+2 种基金the "111" Project of the Ministry of Education of ChinaThe Ministry of Education(BMU20100014)the China Postdoctoral Science Foundation (20090450266)
文摘Objective Our previous study showed that tumor tissue-derived formaldehyde at low concentrations plays an important role in bone cancer pain through activating transient receptor potential vanilloid subfamily member 1 (TRPV 1). The present study further explored whether this tumor tissue-derived endogenous formaldehyde regulates TRPV1 expres- sion in a rat model of bone cancer pain, and if so, what the possible signal pathways are during the development of this type of pain. Methods A rat model of bone cancer pain was established by injecting living MRMT-1 tumor cells into the tibia. The formaldehyde levels were determined by high performance liquid chromatography, and the expression of TRPV1 was examined with Western blot and RT-PCR. In primary cultured dorsal root ganglion (DRG) neurons, the ex- pression of TRPV1 was assessed after treatment with 100 ~tmol/L formaldehyde with or without pre-addition of PD98059 [an inhibitor for extracellular signal-regulated kinase], SB203580 (a p38 inhibitor), SP600125 [an inhibitor for c-Jun N- terminal kinase], BIM [a protein kinase C (PKC) inhibitor] or LY294002 [a phosphatidylinositol 3-kinase (PI3K) inhibi- tor]. Results In the rat model of bone cancer pain, formaldehyde concentration increased in blood plasma, bone marrow and the spinal cord. TRPV1 protein expression was also increased in the DRG. In primary cultured DRG neurons, 100 p^mol/L formaldehyde significantly increased the TRPV1 expression level. Pre-incubation with PD98059, SB203580, SP600125 or LY294002, but not BIM, inhibited the formaldehyde-induced increase of TRPV1 expression. Conclusion Formaldehyde at a very low concentration up-regulates TRPV1 expression through mitogen-activated protein kinase and PI3K, but not PKC, signaling pathways. These results further support our previous finding that TRPV1 in peripheral after- ents plays a role in bone cancer pain.
基金Supported by Technology Foundation of Ministry of Education, China
文摘AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was fo
基金grants fromthe Chinese Academy of Sciences (No. KJ951-BI608), the National Natural Sciences FOundation ofChina (No. 39625007 and
文摘We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.
基金grants from the National Natural Science Foundation of China(No.30370533and30570671)Educational Department Science Research Foundation of Jiangsu Province(No. 05KJB310134)
文摘Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gastric ischemia-reperfusion (GI-R). And we elucidated the molecular mechanisms of the protection of PVN from GI-R injuries. Methods Sprague-Dawley rats were divided randomly into 4 groups: Group I, the sham-operated GI-R control group; Group II, the sham-operated electrical stimulations to PVN + sham-operated GI-R control group; Group III, the GI-R group; and Group IV, the electrical stimulations to PVN + GI-R group. In all of the experiments, the PVN was stimulated prior to the induction of GI-R. The GI-R model was established by clamping the celiac artery for 30 minutes to induce ischemia and then was released to allow reperfusion for 30 minutes, 1 hour, 3 hours and 6 hours, respectively. The gastric mucosal cellular apoptosis, proliferation, and the expression and activity of MAPKs protein were observed by immunohistochemistry and Western blotting, respectively. Results Compared with the GI-R group, the application of electrical stimulations in the PVN significantly depressed gastric mucosal cellular apoptosis and enhanced gastric mucosal cellular proliferation following the 30-minute, 1-hour and 3-hour intervals of reperfusion; it also promoted the activation of p-ERK during the early phase of reperfusion but inhibited the activation of p-JNK1/2 and p-p38 following the 30-minute, 1-hour and 3-hour intervals of reperfusion. Conclusions The protection of PVN against GI-R injuries may attribute to the inhibition of apoptosis and the promotion of the proliferation of gastric mucosal cells during GI-R. This protective effect is mediated by activating the ERK pathway and depressing the JNK, the JNK. p38 MAPK oathwavs of the oastric mucosal cells.
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA02Z341)the Science and Technology Research Program of Zhejiang Province, China (No. 2008C30037)
文摘Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory efibcts of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 pmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P〈0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P〈0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer.
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.
基金Supported by A fellowship from the Daiichi Sankyo Foundation of Life Science,to Nakagawa H
文摘It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a complex and heterogeneous tumor with several genomic mutations,it usually develops in the context of chronic liver damage and inflammation,suggesting that understanding the mechanism(s) of inflammation-mediated hepatocarcinogenesis is essential for the treatment and prevention of HCC.Chronic liver damage induces a persistent cycle of necroinflammation and hepatocyte regeneration,resulting in genetic mutations in hepatocytes and expansion of initiated cells,eventually leading to HCC development.Recently,several inflammation-and stress-related signaling pathways have been identified as key players in these processes,which include the nuclear factor B,signal transducer and activator of transcription,and stress-activated mitogen-activated protein kinase pathways.Although these pathways may suggest potential therapeutic targets,they have a wide range of functions and complex crosstalk occurs among them.This review focuses on recent advances in our understanding of the roles of these signaling pathways in hepatocarcinogenesis.
基金Supported by the National Natural Science Foundation of China(No.30973694)
文摘Objective: To investigate the mechanism of inflammatory-mediated toll-like receptor 4(TLR4)-p38 mitogen-activated protein kinase(p38 MAPK) pathway in Kupffer cells(KCs) of non-alcoholic steatohepatitis(NASH) rats and the intervention effect of soothing Gan(Liver) and invigorating Pi(Spleen) recipes on this pathway. Methods: After 1 week of acclimatization, 120 Sprague-Dawley male rats were randomly divided into 8 groups using a random number table(n=15 per group): normal group, model group, low-dose Chaihu Shugan Powder(柴胡疏肝散, CHSG) group(3.2 g/kg), high-dose CHSG group(9.6 g/kg), low-dose Shenling Baizhu Powder(参苓白术散, SLBZ) group(10 g/kg), high-dose SLBZ(30 g/kg) group, and low-and highdose integrated recipe(L-IR, H-IR) groups. All rats in the model and treatment groups were fed with a high-fat diet(HFD). The treatments were administrated by gastrogavage once daily and lasted for 26 weeks. The liver tissues were detected with hematoxylin-eosin(HE) and oil red O staining. Levels of liver lipids, serum lipids and transaminases were measured. KCs were isolated from the livers of rats to evaluate the mRNA expressions of TLR4 and p38 MAPK by real-time fluorescence quantitative polymerase chain reaction, and proteins expressions of TLR4, p-p38 MAPK and p38 MAPK by Western blot. Levels of inflammatory cytokines including tumor necrosis factor α(TNF-α), interleukin(IL)-1 and IL-6 in KCs were measured by enzyme-linked immunosorbent assay. Results: After 26 weeks of HFD feeding, HE and oil red O staining showed that the NASH model rats successfully reproduced typical pathogenesis and histopathological features. Compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, serum levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol, and aspartate aminotransferase as well as TC and TG levels in liver tissues, and significant decrease in serum level of high-density lipoprotein cholesterol(P<0.05 or P<0.01), whi