Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multi...Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.展开更多
Soil salinity is one of the major abiotic stresses affecting plant growth and crop production.In the present study,salt tolerance at rice seedling stage was evaluated using 87 introgression lines(ILs),which were der...Soil salinity is one of the major abiotic stresses affecting plant growth and crop production.In the present study,salt tolerance at rice seedling stage was evaluated using 87 introgression lines(ILs),which were derived from a cross between an elite indica cultivar Teqing and an accession of common wild rice(Oryza rufipogon Griff.).Substantial variation was observed for four traits including salt tolerance score(STS), relative root dry weight(RRW),relative shoot dry weight(RSW) and relative total dry weight(RTW).STS was significantly positively correlated with all other three traits.A total of 15 putative quantitative trait loci(QTLs) associated with these four traits were detected using single-point analysis,which were located on chromosomes 1,2,3,6,7,9 and 10 with 8%-26%explaining the phenotypic variance.The O. rufipogon-derived alleles at 13 QTLs(86.7%) could improve the salt tolerance in the Teqing background.Four QTL clusters affecting RRW, RSW and RTW were found on chromosomes 6,7,9 and 10,respectively.Among these four QTL clusters,a major cluster including three QTLs (qRRWIO,qRSWIO and qRTWIO) was found near the maker RM271 on the long arm of chromosome 10,and the O.rufipogon-derived alleles at these three loci increased RRW,RSW and RTW with additive effects of 22.7%,17.3%and 18.5%,respectively,while the phenotypic variance explained by these three individual QTLs for the three traits varied from 19%to 26%.In addition,several salt tolerant ILs were selected and could be used for identifying and utilizing favorable salt tolerant genes from common wild rice and used in the salt tolerant rice breeding program.展开更多
Red rice Is an Interfertlle, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the crop In the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In No...Red rice Is an Interfertlle, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the crop In the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America and the weed has been proposed to have evolved through multiple mechanisms, Including "de-domestication" of US crop cultlvars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedy Oryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traits with the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity have Indicated that many weed strains are closely related to Asian taxa (Including indica and aus rice varieties, which have never been cultivated In the US, and the Asian crop progenitor O. ruflpogon), whereas others show genetic similarity to the tropical Japonica varieties cultivated In the southern US. Herein, we review what Is known about the evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to further characterize the evolutionary genomlcs of this aggressive weed.展开更多
In present study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductiv...In present study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. Substantial variation was observed for all traits and most of the mineral elements were significantly positive correlated or independent except for Fe with Cu. A total of 31 putative quantitative trait loci (QTLs) were detected for these eight mineral elements by single point analysis. Wild rice (O. rufipogon) contributed favorable alleles for most of the QTLs (26 QTLs), and chromosomes 1,9 and 12 exhibited 14 QTLs (45%) for these traits. One major effect of QTL for zinc content accounted for the largest proportion of phenotypic variation (11%-19%) was detected near the simple sequence repeats marker RM152 on chromosome 8. The co-locations of QTLs for some mineral elements observed in this mapping population suggested the relationship was at a molecular level among these traits and could be helpful for simultaneous improvement of these traits in rice grain by marker assisted selection.展开更多
In the present study, a set of chromosome segment introgression lines (CSILs) using Gossypium hirsutum L. TM-1 as the recipient parent and G. barbadense Hai7124 as the donor parent were used to explore the genetic b...In the present study, a set of chromosome segment introgression lines (CSILs) using Gossypium hirsutum L. TM-1 as the recipient parent and G. barbadense Hai7124 as the donor parent were used to explore the genetic basis of heterosis for interspecific hybrids. Two sets of F1 populations individually derived from CSILs crossing with both parents were configured to investigate heterotic loci (HL) and substitution effect loci (SL). A total of 58 HL and 39 SL were identified in 3 years. One stable HL, hLP-A4-3, could be detected in all 3 years. Three HLs, hBS-A8-1, hLP-D6-1, and hSI-D7-11, could be detected in 2 years. Four SLs, sBSoD7- 1, sLP-A8-1, sLP-D7-1, and sLP-D12-1, could be detected in 2 years. HL and SL tended to be distributed in some HL-rich chromosome segments with close positions. Compared with QTL detected in a former study, HL showed little overlap with QTL, indicating that trait phenotype and heterosis might be controlled by different sets of loci. All three forms of genetic effects (partial-, full-, over-dominant) were identified, while the over-dominant effect made the main contribution to heterosis. These results may help lay the foundation for clarifying the heredity mechanism of heterosis in cotton.展开更多
Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species ...Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species belonging to the genera of Thinopyrum, Agropyron, Elymus, Leymus, Roegneria, and Psathyrostachy. Through wide crosses combining with cell culture, use ofph mutants, or irradiation, 3 BYDV resistance genes in Th. intermedium, including Bdv2, Bdv3 and Bdv4, were introgressed into common wheat background. Various wheat-Th, intermedium addition and substitution, translocation lines with BYDV-resistance were developed and characterized, such as 7D-TAi#1 (bearing Bdv2), 7B-7Ai#1, 7D-7E (beating Bdv3), and 2D-2Ai-2 (bearing Bdv4) translocations. Three wheat varieties with BYDV resistance from Th. intermedium were developed and released in Australia and China, respectively. In addition, wheat-Agropyron cristatum translocation lines, wheat-Ag, pulcherrimum addition and substitution lines, and a wheat-Leymus multicaulis addition line (line24) with different resistance genes were developed. Cytological analysis, morphological markers, biochemical markers, and molecular markers associated with the alien chromatin carrying BYDV resistance genes were identified and applied to determine the presence of alien, chromosomes or segments, size of alien chromosome segments, and compositions of the alien chromosomes. Furthermore, some resistance-related genes, such as RGA, P450, HSP70, protein kinases, centrin, and transducin, were identified, which expressed specifically in the resistance translocation lines with Bdv2. These studies lay the foundations for developing resistant wheat cultivars and unraveling the resistance mechanism against BYDV.展开更多
Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to ...Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to characterize the responses of seedlings to low P availability and to identify QTLs for root traits, biomass, and plant height under P-deficiency and P-sufficiency conditions. Plant height, total dry weight, shoot dry weight, and root number were inhibited under P-deficiency, whereas maximum root length (MRL) and root-shoot ratio (RS) were induced by P-deficiency stress. Relative MRL (RMRL, the ratio of MRL under P-deficiency to MRL under P-sufficiency con- dition) and relative RS (RRS) were used to evaluate P-deficiency tolerance at the seedling stage. A total of 24 additive QTLs and 29 pairs of epistatic QTLs were detected, but only qRN4 was detected in both conditions. This suggested that different mechanisms may exist in both P supply levels. QTLs for adaptive traits (RMRL, RRS, RRV, and RRDW) and qRN4 consistently expressed to increase trait stability may contribute to P-deficiency tolerance. Twelve intervals were cluster regions of QTLs for P-deficiency tolerance, and one QTL (qRRSS) showed pleiotropic effects on P-deficiency tolerance and drought tolerance. These interesting QTLs can be used in marker-assisted breeding through the target ILs.展开更多
Common wheat(Triticum aestivum,BBAADD)is a major staple food crop worldwide.The diploid progenitors of the A and D subgenomes have been unequivocally identified;that of B,however,remains ambiguous and controversial bu...Common wheat(Triticum aestivum,BBAADD)is a major staple food crop worldwide.The diploid progenitors of the A and D subgenomes have been unequivocally identified;that of B,however,remains ambiguous and controversial but is suspected to be related to species of Aegilops,section Sitopsis.Here,we report the assembly of chromosome-level genome sequences of all five Sitopsis species,namely Aegilops bicornis,Ae.longissima,Ae.searsii,Ae.sharonensis,and Ae.speltoides,as well as the partial assembly of the Amblyopyrum muticum(synonym Aegilops mutica)genome for phylogenetic analysis.Our results reveal that the donor of the common wheat B subgenome is a distinct,and most probably extinct,diploid species that diverged from an ancestral progenitor of the B lineage to which the still extant Ae.speltoides and Am.muticum belong.In addition,we identified interspecific genetic introgressions throughout the evolution of the Triticum/Aegilops species complex.The five Sitopsis species have various assembled genome sizes(4.11-5.89 Gb)with high proportions of repetitive sequences(85.99%-89.81%);nonetheless,they retain high collinearity with other genomes or subgenomes of species in the Triticum/Aegilops complex.Differences in genome size were primarily due to independent post-speciation amplification of transposons.We also identified a set of Sitopsis genes pertinent to important agronomic traits that can be harnessed for wheat breeding.These newly assembled genome resources provide a new roadmap for evolutionary and genetic studies of the Triticum/Aegilops complex,as well as for wheat improvement.展开更多
Drought is the most important factor limiting rice yields in the rainfed areas of Asia. To overcome the problem, we developed a new strategy 'designed QTL pyramiding' to more effi ciently develop drought toler...Drought is the most important factor limiting rice yields in the rainfed areas of Asia. To overcome the problem, we developed a new strategy 'designed QTL pyramiding' to more effi ciently develop drought tolerant (DT)展开更多
Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133...Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133) with 5.58% crossability, which ranged from 0.11% to 1.62% in the backcross generations. The chromosome numbers of the backcross progenies were 24 to 48. Seven yield-related traits of the parents, hybrid F1, and backcross progenies were evaluated. Simple sequence repeat markers analysis showed that the polymorphism ratio of SSR bands between IR24 and Acc. No. 101133 was 93.2%. The average donor segment number, length, donor genome size, and percentage of donor genome of 92 BC3F1 plants (2n=24) were 24.1, 17.8 cM, 438.4 cM and 26.2%, respectively. They were complex variation and uneven among the chromosomes. These introgression lines could be used to identify the favorable genes of O. minuta and provide a new platform for the genetic improvement of cultivated rice.展开更多
基金Supported by the Project of Conservation and Utilization of Agricultural Wild Plants of the Ministry of Agriculture of China and a Grant from High- Tech Research and Development (863) Program of China (2006AA100101 ), and the National Natural Science Foundation of China (30270803). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).
文摘Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.
基金supported by the Project of Conservation and Utilization of Agro-Wild Plants of the Ministry of Agriculture of China and Special Fund for Agro-scientific Research in the Public Interest(No.201003021)
文摘Soil salinity is one of the major abiotic stresses affecting plant growth and crop production.In the present study,salt tolerance at rice seedling stage was evaluated using 87 introgression lines(ILs),which were derived from a cross between an elite indica cultivar Teqing and an accession of common wild rice(Oryza rufipogon Griff.).Substantial variation was observed for four traits including salt tolerance score(STS), relative root dry weight(RRW),relative shoot dry weight(RSW) and relative total dry weight(RTW).STS was significantly positively correlated with all other three traits.A total of 15 putative quantitative trait loci(QTLs) associated with these four traits were detected using single-point analysis,which were located on chromosomes 1,2,3,6,7,9 and 10 with 8%-26%explaining the phenotypic variance.The O. rufipogon-derived alleles at 13 QTLs(86.7%) could improve the salt tolerance in the Teqing background.Four QTL clusters affecting RRW, RSW and RTW were found on chromosomes 6,7,9 and 10,respectively.Among these four QTL clusters,a major cluster including three QTLs (qRRWIO,qRSWIO and qRTWIO) was found near the maker RM271 on the long arm of chromosome 10,and the O.rufipogon-derived alleles at these three loci increased RRW,RSW and RTW with additive effects of 22.7%,17.3%and 18.5%,respectively,while the phenotypic variance explained by these three individual QTLs for the three traits varied from 19%to 26%.In addition,several salt tolerant ILs were selected and could be used for identifying and utilizing favorable salt tolerant genes from common wild rice and used in the salt tolerant rice breeding program.
基金Supported by the National Science Foundation Plant Genome Research Program (DBI-0638820). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).Acknowledgements The authors thank David R. Gealy of the Dale Bumpers National Rice Research Center for his insightful comments on US red rice natural history and genetic diversity.
文摘Red rice Is an Interfertlle, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the crop In the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America and the weed has been proposed to have evolved through multiple mechanisms, Including "de-domestication" of US crop cultlvars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedy Oryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traits with the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity have Indicated that many weed strains are closely related to Asian taxa (Including indica and aus rice varieties, which have never been cultivated In the US, and the Asian crop progenitor O. ruflpogon), whereas others show genetic similarity to the tropical Japonica varieties cultivated In the southern US. Herein, we review what Is known about the evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to further characterize the evolutionary genomlcs of this aggressive weed.
基金Supported by the Project of Conservation and Utilization of AgriculturalWild Plants of the Ministry of Agriculture of Chinathe National High-TechResearch and Development ("863") Program of China (2006AA100101)the National Natural Science Foundation of China (30771319).
文摘In present study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. Substantial variation was observed for all traits and most of the mineral elements were significantly positive correlated or independent except for Fe with Cu. A total of 31 putative quantitative trait loci (QTLs) were detected for these eight mineral elements by single point analysis. Wild rice (O. rufipogon) contributed favorable alleles for most of the QTLs (26 QTLs), and chromosomes 1,9 and 12 exhibited 14 QTLs (45%) for these traits. One major effect of QTL for zinc content accounted for the largest proportion of phenotypic variation (11%-19%) was detected near the simple sequence repeats marker RM152 on chromosome 8. The co-locations of QTLs for some mineral elements observed in this mapping population suggested the relationship was at a molecular level among these traits and could be helpful for simultaneous improvement of these traits in rice grain by marker assisted selection.
基金supported by grants from the Shandong Province System of Modern Agriculture Industrial Technology(Cotton industry)the Science and Technology Development Project of Shandong Province (2012GGB01026)the Shandong Agricultural Breeding Project(2010LZ005-01)
文摘In the present study, a set of chromosome segment introgression lines (CSILs) using Gossypium hirsutum L. TM-1 as the recipient parent and G. barbadense Hai7124 as the donor parent were used to explore the genetic basis of heterosis for interspecific hybrids. Two sets of F1 populations individually derived from CSILs crossing with both parents were configured to investigate heterotic loci (HL) and substitution effect loci (SL). A total of 58 HL and 39 SL were identified in 3 years. One stable HL, hLP-A4-3, could be detected in all 3 years. Three HLs, hBS-A8-1, hLP-D6-1, and hSI-D7-11, could be detected in 2 years. Four SLs, sBSoD7- 1, sLP-A8-1, sLP-D7-1, and sLP-D12-1, could be detected in 2 years. HL and SL tended to be distributed in some HL-rich chromosome segments with close positions. Compared with QTL detected in a former study, HL showed little overlap with QTL, indicating that trait phenotype and heterosis might be controlled by different sets of loci. All three forms of genetic effects (partial-, full-, over-dominant) were identified, while the over-dominant effect made the main contribution to heterosis. These results may help lay the foundation for clarifying the heredity mechanism of heterosis in cotton.
基金supported by the National "Hi-Tech" Programs "Functional Genomics of Wheat Disease Resis-tance" (No. 2006AA10A104)"Biotech. Breeding of Wheat Varieties with Multi-Resistance and Good Quality" (No. 2006AA100102)
文摘Barley yellow dwarf virus (BYDV) may cause a serious disease affecting wheat worldwide. True resistance to BYDV is not naturally found in wheat. BYDV resistance genes are found in more than 10 wild relative species belonging to the genera of Thinopyrum, Agropyron, Elymus, Leymus, Roegneria, and Psathyrostachy. Through wide crosses combining with cell culture, use ofph mutants, or irradiation, 3 BYDV resistance genes in Th. intermedium, including Bdv2, Bdv3 and Bdv4, were introgressed into common wheat background. Various wheat-Th, intermedium addition and substitution, translocation lines with BYDV-resistance were developed and characterized, such as 7D-TAi#1 (bearing Bdv2), 7B-7Ai#1, 7D-7E (beating Bdv3), and 2D-2Ai-2 (bearing Bdv4) translocations. Three wheat varieties with BYDV resistance from Th. intermedium were developed and released in Australia and China, respectively. In addition, wheat-Agropyron cristatum translocation lines, wheat-Ag, pulcherrimum addition and substitution lines, and a wheat-Leymus multicaulis addition line (line24) with different resistance genes were developed. Cytological analysis, morphological markers, biochemical markers, and molecular markers associated with the alien chromatin carrying BYDV resistance genes were identified and applied to determine the presence of alien, chromosomes or segments, size of alien chromosome segments, and compositions of the alien chromosomes. Furthermore, some resistance-related genes, such as RGA, P450, HSP70, protein kinases, centrin, and transducin, were identified, which expressed specifically in the resistance translocation lines with Bdv2. These studies lay the foundations for developing resistant wheat cultivars and unraveling the resistance mechanism against BYDV.
基金supported by the Hi-Tech Research and Development Program of China (No. 2006AA10Z158 and No. 2006AA100101)the "948" Project (No. 2006-G1)+1 种基金China National Key Technologies R & D Program (No. 2006BAD13B01-6)the Program for Chang Jiang Scholars and Innovative Research Team in University, Program of Introducing Talents of Discipline to Universi-ties in China (111-2-03).
文摘Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to characterize the responses of seedlings to low P availability and to identify QTLs for root traits, biomass, and plant height under P-deficiency and P-sufficiency conditions. Plant height, total dry weight, shoot dry weight, and root number were inhibited under P-deficiency, whereas maximum root length (MRL) and root-shoot ratio (RS) were induced by P-deficiency stress. Relative MRL (RMRL, the ratio of MRL under P-deficiency to MRL under P-sufficiency con- dition) and relative RS (RRS) were used to evaluate P-deficiency tolerance at the seedling stage. A total of 24 additive QTLs and 29 pairs of epistatic QTLs were detected, but only qRN4 was detected in both conditions. This suggested that different mechanisms may exist in both P supply levels. QTLs for adaptive traits (RMRL, RRS, RRV, and RRDW) and qRN4 consistently expressed to increase trait stability may contribute to P-deficiency tolerance. Twelve intervals were cluster regions of QTLs for P-deficiency tolerance, and one QTL (qRRSS) showed pleiotropic effects on P-deficiency tolerance and drought tolerance. These interesting QTLs can be used in marker-assisted breeding through the target ILs.
基金This study was supported by the Natural Science Foundation of China(31991211 to B.L.and 31970235 to L.F.L.)the Shanghai Pujiang Program(19PJ1401500 to L.F.L.),Israel Science Foundation(ISF)-China National Natural Science Foundation(NSFC)collaborative grants to B.L.(32061143001)and A.A.L.(3394/20)a China Postdoctoral Science Foundation grant(2021M690683).
文摘Common wheat(Triticum aestivum,BBAADD)is a major staple food crop worldwide.The diploid progenitors of the A and D subgenomes have been unequivocally identified;that of B,however,remains ambiguous and controversial but is suspected to be related to species of Aegilops,section Sitopsis.Here,we report the assembly of chromosome-level genome sequences of all five Sitopsis species,namely Aegilops bicornis,Ae.longissima,Ae.searsii,Ae.sharonensis,and Ae.speltoides,as well as the partial assembly of the Amblyopyrum muticum(synonym Aegilops mutica)genome for phylogenetic analysis.Our results reveal that the donor of the common wheat B subgenome is a distinct,and most probably extinct,diploid species that diverged from an ancestral progenitor of the B lineage to which the still extant Ae.speltoides and Am.muticum belong.In addition,we identified interspecific genetic introgressions throughout the evolution of the Triticum/Aegilops species complex.The five Sitopsis species have various assembled genome sizes(4.11-5.89 Gb)with high proportions of repetitive sequences(85.99%-89.81%);nonetheless,they retain high collinearity with other genomes or subgenomes of species in the Triticum/Aegilops complex.Differences in genome size were primarily due to independent post-speciation amplification of transposons.We also identified a set of Sitopsis genes pertinent to important agronomic traits that can be harnessed for wheat breeding.These newly assembled genome resources provide a new roadmap for evolutionary and genetic studies of the Triticum/Aegilops complex,as well as for wheat improvement.
文摘Drought is the most important factor limiting rice yields in the rainfed areas of Asia. To overcome the problem, we developed a new strategy 'designed QTL pyramiding' to more effi ciently develop drought tolerant (DT)
基金Supported by the National Natural Science Foundation of China (Grant No. 30370 869)
文摘Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133) with 5.58% crossability, which ranged from 0.11% to 1.62% in the backcross generations. The chromosome numbers of the backcross progenies were 24 to 48. Seven yield-related traits of the parents, hybrid F1, and backcross progenies were evaluated. Simple sequence repeat markers analysis showed that the polymorphism ratio of SSR bands between IR24 and Acc. No. 101133 was 93.2%. The average donor segment number, length, donor genome size, and percentage of donor genome of 92 BC3F1 plants (2n=24) were 24.1, 17.8 cM, 438.4 cM and 26.2%, respectively. They were complex variation and uneven among the chromosomes. These introgression lines could be used to identify the favorable genes of O. minuta and provide a new platform for the genetic improvement of cultivated rice.