AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at th...AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at the PEG terminus of liposome. LoVo adenocarcinoma cell line was treated with immunoliposomal docetaxel or/and irradiation. MTT colorimetric assay was used to estimate cytotoxicity of immunoliposomal docetaxel and radiotoxicity. Cell cycle redistribution and apoptosis were determined with flow cytometry. Survivin expression in LoVo cells was verified by immunohistochemistry. D801 morphologic analysis system was used to semi-quantify immunohistochemical staining of survivin. RESULTS: Cytotoxicity was induced by immunoliposomal docetaxel alone in a dose-dependent manner. Immunoliposomal docetaxel yielded a cytotoxicity effect at a low dose of 2 nmol/L. With a single dose irradiation, the relative surviving fraction of LoVo cells showed a dose-dependent response, but there were no significant changes as radiation delivered from 4 to 8 Gy. Compared with liposomal docetaxel or single dose irradiation, strongly radiopotentiating effects of immunoliposomal docetaxel on LoVo cells were observed. A low dose of immunoliposomal docetaxel could yield sufficient radiosensitivity. Immunoliposomal docetaxel were achieved both specificity of the conjugated antibody and drug radiosensitization. Combined with radiation, immunoliposomal docetaxel significantly increased the percentage of G2/M cells and induced apoptosis, but significantly decreased the percentage of cells in G2/G1 and S phase by comparison with liposomal docetaxel. Immunohistochemical analysis showed that the brown stained survivin was mainly in cytoplasm of LoVo cells. Semi-quantitative analysis of the survivin immunostaining showed that the expression of survivin in LoVo cells under irradiation with immunoliposomal docetaxel was significantly decreased. CONCLUSION: Immunoliposomal docetaxel is strongly effective for target radiosensitation in LoVo colon展开更多
The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives,gaining interest worldwide ever since it was first identified in December 2019.Till 2023,752 million cumulative cases and 6.8 million deaths...The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives,gaining interest worldwide ever since it was first identified in December 2019.Till 2023,752 million cumulative cases and 6.8 million deaths were documented globally.COVID-19 has been rapidly evolving,affecting virus transmissibility and properties and contributing to increased disease severity.The Omicron is themost circulating variant of concern.Although success in its treatment has indicated progress in tackling the virus,limitations in delivering the current antiviral agents in battling emerging variants remain remarkable.With the latest advancements in nanotechnology for controlling infectious diseases,liposomes have the potential to counteract SARS-CoV-2 because of their ability to employ different targeting strategies,incorporating monoclonal antibodies for the active and passive targeting of infected patients.This review will present a concise summary of the possible strategies for utilizing immunoliposomes to improve current treatment against the occurrence of SARSCoV-2 and its variants.展开更多
Background Inhibition of aging of vascular endothelial cells (VECs) may delay aging and prolong life. The goal of this study was to prepare anti-CD31 monoclonal antibody conjugated PEG-modified liposomes containing ...Background Inhibition of aging of vascular endothelial cells (VECs) may delay aging and prolong life. The goal of this study was to prepare anti-CD31 monoclonal antibody conjugated PEG-modified liposomes containing the AU-rich region connecting factor 1 (AUF1) gene (CD31-PILs-AUF1) and to explore the effects of targeting CD31-PILs-AUF1 to aging VECs. Methods The mean particle sizes of various PEGylated immunoliposomes (PILs) were measured using a Zetasizer Nano ZS. Gel retardation assay was used to confirm whether PILs had encapsulated the AUF1 plasmid successfully. Fluorescence microscopy and flow cytometry were used to quantify binding of CD31-PILs-AUF1 to target cells. Flow cytometry was also used to analyze the cell cycles of aging bEnd3 cells treated with CD31-PILs-AUF1. We also developed an aging mouse model by treating mice with D-galactose. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the levels of interleuldn-6 (IL-6) and tumor necrosis factor-or (TNF-ct). The malondialdehyde (MDA) and the superoxide dismutase (SOD) levels were detected by commercial kits. Hematoxylin-eosin (HE) staining was used to determine whether treatment with CD31-PILs-AUF 1 was toxic to the mice. Results CD31-PILs-AUF 1 specifically could targeted bEnd3 VECs and increased the percentage of cells in the S and G2/M phases of aging bEnd3 cells. ELISA showed that content of the IL-6 and TNF-ct decreased in CD31-PILs-AUF1 group. The level of SOD increased, whereas MDA decreased in the CD31-PILs-AUF1 group. Additionally, CD31-PILs-AUF 1 was not toxic to the mice. Conclusion CD31-PILs-AUF 1 targets VECs and may delay their senescence.展开更多
基金Supported by the Department of Science and Technology of Shandong Province
文摘AIM:To enhance the radiosensitivity of human colon cancer cells by docetaxel. METHODS: Immunoliposomal docetaxel was prepared by coupling monoclonal antibody against carcinoembryonic antigen to cyanuric chloride at the PEG terminus of liposome. LoVo adenocarcinoma cell line was treated with immunoliposomal docetaxel or/and irradiation. MTT colorimetric assay was used to estimate cytotoxicity of immunoliposomal docetaxel and radiotoxicity. Cell cycle redistribution and apoptosis were determined with flow cytometry. Survivin expression in LoVo cells was verified by immunohistochemistry. D801 morphologic analysis system was used to semi-quantify immunohistochemical staining of survivin. RESULTS: Cytotoxicity was induced by immunoliposomal docetaxel alone in a dose-dependent manner. Immunoliposomal docetaxel yielded a cytotoxicity effect at a low dose of 2 nmol/L. With a single dose irradiation, the relative surviving fraction of LoVo cells showed a dose-dependent response, but there were no significant changes as radiation delivered from 4 to 8 Gy. Compared with liposomal docetaxel or single dose irradiation, strongly radiopotentiating effects of immunoliposomal docetaxel on LoVo cells were observed. A low dose of immunoliposomal docetaxel could yield sufficient radiosensitivity. Immunoliposomal docetaxel were achieved both specificity of the conjugated antibody and drug radiosensitization. Combined with radiation, immunoliposomal docetaxel significantly increased the percentage of G2/M cells and induced apoptosis, but significantly decreased the percentage of cells in G2/G1 and S phase by comparison with liposomal docetaxel. Immunohistochemical analysis showed that the brown stained survivin was mainly in cytoplasm of LoVo cells. Semi-quantitative analysis of the survivin immunostaining showed that the expression of survivin in LoVo cells under irradiation with immunoliposomal docetaxel was significantly decreased. CONCLUSION: Immunoliposomal docetaxel is strongly effective for target radiosensitation in LoVo colon
基金the financial support obtained from Universiti Kebangsaan Malaysia(DIP-2021-001)ASEANIndia Science&Technology Development Fund(AISTDF)(SERB/F/3955/2022-2023).
文摘The global COVID-19 pandemic arising from SARS-CoV-2 has impacted many lives,gaining interest worldwide ever since it was first identified in December 2019.Till 2023,752 million cumulative cases and 6.8 million deaths were documented globally.COVID-19 has been rapidly evolving,affecting virus transmissibility and properties and contributing to increased disease severity.The Omicron is themost circulating variant of concern.Although success in its treatment has indicated progress in tackling the virus,limitations in delivering the current antiviral agents in battling emerging variants remain remarkable.With the latest advancements in nanotechnology for controlling infectious diseases,liposomes have the potential to counteract SARS-CoV-2 because of their ability to employ different targeting strategies,incorporating monoclonal antibodies for the active and passive targeting of infected patients.This review will present a concise summary of the possible strategies for utilizing immunoliposomes to improve current treatment against the occurrence of SARSCoV-2 and its variants.
基金This work was supported by grants from the Guangxi Natural Science Foundation (No. 2015GXNSFAA139217 and 2016GXNSFAA380231), a grant from The Scientific Research Fund of Guangxi Education Department (No. YB2014057) entitled "AU-rich region connecting factor 1 targeted vascular endothelial cells for anti-aging", a grant from the Youth Foundation in Guangxi Medical Univer- sity (No. GXMUYSF201328), a grant from the Undergraduate Innovative plan in Guangxi (No. 201510598012), and a grant from the Guangxi Education Department Grant entitled "Innovation Project of Guangxi Graduate Educa- tion".
文摘Background Inhibition of aging of vascular endothelial cells (VECs) may delay aging and prolong life. The goal of this study was to prepare anti-CD31 monoclonal antibody conjugated PEG-modified liposomes containing the AU-rich region connecting factor 1 (AUF1) gene (CD31-PILs-AUF1) and to explore the effects of targeting CD31-PILs-AUF1 to aging VECs. Methods The mean particle sizes of various PEGylated immunoliposomes (PILs) were measured using a Zetasizer Nano ZS. Gel retardation assay was used to confirm whether PILs had encapsulated the AUF1 plasmid successfully. Fluorescence microscopy and flow cytometry were used to quantify binding of CD31-PILs-AUF1 to target cells. Flow cytometry was also used to analyze the cell cycles of aging bEnd3 cells treated with CD31-PILs-AUF1. We also developed an aging mouse model by treating mice with D-galactose. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the levels of interleuldn-6 (IL-6) and tumor necrosis factor-or (TNF-ct). The malondialdehyde (MDA) and the superoxide dismutase (SOD) levels were detected by commercial kits. Hematoxylin-eosin (HE) staining was used to determine whether treatment with CD31-PILs-AUF 1 was toxic to the mice. Results CD31-PILs-AUF 1 specifically could targeted bEnd3 VECs and increased the percentage of cells in the S and G2/M phases of aging bEnd3 cells. ELISA showed that content of the IL-6 and TNF-ct decreased in CD31-PILs-AUF1 group. The level of SOD increased, whereas MDA decreased in the CD31-PILs-AUF1 group. Additionally, CD31-PILs-AUF 1 was not toxic to the mice. Conclusion CD31-PILs-AUF 1 targets VECs and may delay their senescence.