Superlubricity refers to a sliding regime in which contacting surfaces move over one another without generating much adhesion or friction[1].From a practical application point of view,this will be the most ideal tribo...Superlubricity refers to a sliding regime in which contacting surfaces move over one another without generating much adhesion or friction[1].From a practical application point of view,this will be the most ideal tribological situation for many moving mechanical systems mainly because friction consumes large amounts of energy and causes greenhouse gas emissions[2].Superlubric sliding can also improve performance and durability of these systems.In this paper,we attempt to provide an overview of how controlled or targeted bulk,surface,or tribochemistry can lead to superlubricity in diamond-like carbon(DLC)films.Specifically,we show that how providing hydrogen into bulk and near surface regions as well as to sliding contact interfaces of DLC films can lead to super-low friction and wear.Incorporation of hydrogen into bulk DLC or near surface regions can be done during deposition or through hydrogen plasma treatment after the deposition.Hydrogen can also be fed into the sliding contact interfaces of DLCs during tribological testing to reduce friction.Due to favorable tribochemical interactions,these interfaces become very rich in hydrogen and thus provide super-low friction after a brief run-in period.Regardless of the method used,when sliding surfaces of DLC films are enriched in hydrogen,they then provide some of the lowest friction coefficients(i.e.,down to 0.001).Time-of-flight secondary ion mass spectrometer(TOF-SIMS)is used to gather evidence on the extent and nature of tribochemical interactions with hydrogen.Based on the tribological and surface analytical findings,we provide a mechanistic model for the critical role of hydrogen on superlubricity of DLC films.展开更多
Despite continuous improvements in machine elements over the past few decades,lubrication issues have impeded human exploration of the universe because single solid or liquid lubrication systems have been unable to sa...Despite continuous improvements in machine elements over the past few decades,lubrication issues have impeded human exploration of the universe because single solid or liquid lubrication systems have been unable to satisfy the ever-increasing performance requirements of space tribology.In this study,we present an overview of the development of carbon-based films as protective coatings,with reference to their high hardness,low friction,and chemical inertness,and with a particular focus on diamond-like carbon(DLC)films.We also discuss the design of carbon-based solid-liquid synergy lubricating coatings with regards to their physicochemical properties and tribological performance.Solid-liquid composite coatings are fabricated via spinning liquid lubricants on solid lubricating films.Such duplex lubricating coatings are considered the most ideal lubrication choice for moving mechanical systems in space as they can overcome the drawback of adhesion and cold-welding associated with solid films under harsh space conditions and can minimize the crosslinking or chain scission of liquid lubricants under space irradiation.State of the art carbon-based solid-liquid synergy lubricating systems therefore holds great promise for space applications due to solid/liquid synergies resulting in superior qualities including excellent friction reduction and anti-wear properties as well as strong anti-irradiation capacities,thereby meeting the requirements of high reliability,high precision,high efficiency,and long lifetime for space drive mechanisms.展开更多
Diamond-like carbon(DLC)coatings are known to provide beneficial mechanical and tribological properties in harsh environments.Their combination of high wear resistance and low friction has led to their extensive use i...Diamond-like carbon(DLC)coatings are known to provide beneficial mechanical and tribological properties in harsh environments.Their combination of high wear resistance and low friction has led to their extensive use in any number of industries.The tribological performance of a DLC coating is varied however,and the frictional response is known to be strongly dependent on the surrounding environment,as well as the material composition and bonding structure of the DLC coating.This paper presents an up-to-date review on the friction of DLC coatings in a water environment,with a special focus on transfer layer formation and tribochemistry.展开更多
Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tri...Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tribological behaviors.In this study,GLC and two types of DLC coatings were deposited on GCr15 substrate for investigation.The friction and wear properties of self-mated and steel-mated pairs were evaluated.Two temperatures(25 and 90℃),three lubrication conditions(base oil,molybdenum dithiocarbamate(MoDTC)-containing oil,MoDTC+zinc dialkyldithiophosphate(ZDDP)-containing oil),and high Hertz contact stress(2.41 GPa)were applied in the experiments.The results showed that high temperature promoted the effect of ZDDP on steel-mated pairs,but increased wear under base oil lubrication.The increased wear for steel-mated pairs lubricated by MoDTC-containing oil was due to abrasive wear probably caused by MoO_(3) andβ-FeMoO_(4).It was also found that in most cases,the tribological properties of self-mated pairs were better than those of steel-mated pairs.展开更多
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ...Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.展开更多
A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetro...A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.展开更多
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main compos...In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.展开更多
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickersindentation, nanoin-dentation and nanoscratch tests wer...The diamond-like carbon (DLC) films with different thicknesses on 9Crl8bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickersindentation, nanoin-dentation and nanoscratch tests were used to characterize the DLC films with awide range of applied loads. Mechanical and tribological behaviors of these submicron films wereinvestigated and interpreted. The hardnesses of 9Cr18 and DLC. determined by nanoindentation, areapproximately 8GPa and 60GPa respectively; their elastic moduli are approximately 250GPa and 600GParespectively. The friction coefficients of 9Cr18, DLC, organic coating, determined by nanoscratch,are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation andnanoscratch tests can provide more information about the near-surface elastic-plastic deformation,friction and wear properties. The correlation of mechanical properties and scratch resistance of DLCfilms on 9Cr18 steels can provide an assessment for the load-carrying capacity and wear resistance.展开更多
Amorphous carbon films are deposited on the Mo film/ceramic substrates, which are pretreated by a laser spattering chiselling technique (2 line/mm), by using the microwave chemical vapour deposition technique. The f...Amorphous carbon films are deposited on the Mo film/ceramic substrates, which are pretreated by a laser spattering chiselling technique (2 line/mm), by using the microwave chemical vapour deposition technique. The films are characterized by x-ray diffraction, Raman spectrum, optical microscopy, and scanning electron microscopy. The experimental result indicates that the laser spattering chiselling pretreated techniques can essentially improve the field emission uniformity and the emission site density of the amorphous carbon thin film devices so that its emission site density can reach the level of actual application (undistinguishable by naked eye) from a broad well-proportioned emission area of 50mm × 50mm. This kind of device can show various digits and words clearly. The lowest turn-on field below 1 V/m, the emission current density over 5.0±0.1 mA/cm^2, and the highest luminance 1.0 × 10^3 cd/m^2 are obtained. Meanwhile, the role of the laser spattering chiselling techniques in improving the field emission properties of the amorphous carbon film are explained.展开更多
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa...In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.展开更多
Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation ti...Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation time.When used as lubricant in a diamond-like carbon film/bearing steel interface,the nanofluids achieved an ultra-low friction coefficient(μ≈0.02),much lower than that of original polyethylene glycol(μ=0.12).The worn surface analyses revealed that the nanofluids could effectively inhibit the tribo-oxidation of steel counterpart that occurred under original polyethylene glycol lubrication,and hence reduced the abrasion component of friction.Especially,the poly-hydroxyl carbon dots and oxidized polyethylene glycol species in nanofluids induced a hydroxyl-rich sliding interface via their tribochemical reactions with friction surfaces,which promoted the adsorption of polyethylene glycol molecules on sliding surfaces.Along with the mild corrosion wear of steel counterface,this shifted the boundary lubrication to a mixed/film lubrication regime,thereby achieving an ultra-low friction coefficient.The above results suggest that the polyethylene glycol derived carbon quantum dots nanofluids should be a quite excellent candidate lubricant for solid–liquid synergy lubrication based on diamond-like carbon films.展开更多
The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ...The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.展开更多
Shear deformation mechanisms of diamond-like carbon(DLC)are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance,which fu...Shear deformation mechanisms of diamond-like carbon(DLC)are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance,which further influences the improvement of the friction and wear performance of DLC.This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning(ML)techniques.It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks,causing the stick-slip patterns in shear force.In addition,cluster analysis showed that the sp2-sp3 transitions arise in the stick stage,while the sp3-sp2 transitions occur in the slip stage.In order to analyze the mechanisms governing the bond breaking/re-formation in these transitions,the Random Forest(RF)model in ML identifies that the kinetic energies of sp3 atoms and their velocities along the loading direction have the highest influence.This is because high kinetic energies of atoms can exacerbate the instability of the bonding state and increase the probability of bond breaking/re-formation.Finally,the RF model finds that the shear force of DLC is highly correlated to its potential energy,with less correlation to its content of sp3 atoms.Since the changes in potential energy are caused by the variances in the content of sp3 atoms and localized strains,potential energy is an ideal parameter to evaluate the shear deformation of DLC.The results can enhance the understanding of the shear deformation of DLC and support the improvement of its frictional and wear performance.展开更多
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism ...Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.展开更多
基金supported by the U.S.Department of Energy,Office of Energy Efficiency and Renewable Energy,under Contract No.DE-AC02-06CH11357。
文摘Superlubricity refers to a sliding regime in which contacting surfaces move over one another without generating much adhesion or friction[1].From a practical application point of view,this will be the most ideal tribological situation for many moving mechanical systems mainly because friction consumes large amounts of energy and causes greenhouse gas emissions[2].Superlubric sliding can also improve performance and durability of these systems.In this paper,we attempt to provide an overview of how controlled or targeted bulk,surface,or tribochemistry can lead to superlubricity in diamond-like carbon(DLC)films.Specifically,we show that how providing hydrogen into bulk and near surface regions as well as to sliding contact interfaces of DLC films can lead to super-low friction and wear.Incorporation of hydrogen into bulk DLC or near surface regions can be done during deposition or through hydrogen plasma treatment after the deposition.Hydrogen can also be fed into the sliding contact interfaces of DLCs during tribological testing to reduce friction.Due to favorable tribochemical interactions,these interfaces become very rich in hydrogen and thus provide super-low friction after a brief run-in period.Regardless of the method used,when sliding surfaces of DLC films are enriched in hydrogen,they then provide some of the lowest friction coefficients(i.e.,down to 0.001).Time-of-flight secondary ion mass spectrometer(TOF-SIMS)is used to gather evidence on the extent and nature of tribochemical interactions with hydrogen.Based on the tribological and surface analytical findings,we provide a mechanistic model for the critical role of hydrogen on superlubricity of DLC films.
基金The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China(Nos.21373249 and 11172300).
文摘Despite continuous improvements in machine elements over the past few decades,lubrication issues have impeded human exploration of the universe because single solid or liquid lubrication systems have been unable to satisfy the ever-increasing performance requirements of space tribology.In this study,we present an overview of the development of carbon-based films as protective coatings,with reference to their high hardness,low friction,and chemical inertness,and with a particular focus on diamond-like carbon(DLC)films.We also discuss the design of carbon-based solid-liquid synergy lubricating coatings with regards to their physicochemical properties and tribological performance.Solid-liquid composite coatings are fabricated via spinning liquid lubricants on solid lubricating films.Such duplex lubricating coatings are considered the most ideal lubrication choice for moving mechanical systems in space as they can overcome the drawback of adhesion and cold-welding associated with solid films under harsh space conditions and can minimize the crosslinking or chain scission of liquid lubricants under space irradiation.State of the art carbon-based solid-liquid synergy lubricating systems therefore holds great promise for space applications due to solid/liquid synergies resulting in superior qualities including excellent friction reduction and anti-wear properties as well as strong anti-irradiation capacities,thereby meeting the requirements of high reliability,high precision,high efficiency,and long lifetime for space drive mechanisms.
文摘Diamond-like carbon(DLC)coatings are known to provide beneficial mechanical and tribological properties in harsh environments.Their combination of high wear resistance and low friction has led to their extensive use in any number of industries.The tribological performance of a DLC coating is varied however,and the frictional response is known to be strongly dependent on the surrounding environment,as well as the material composition and bonding structure of the DLC coating.This paper presents an up-to-date review on the friction of DLC coatings in a water environment,with a special focus on transfer layer formation and tribochemistry.
基金This work was supported by the Beijing Municipal Natural Science Foundation(3182032)the National Natural Science Foundation of China(41772389)+1 种基金the Pre-Research Program in National 13th Five-Year Plan(61409230603)Joint Fund of Ministry of Education for Pre-research of Equipment for Young Personnel Project(6141A02033120).
文摘Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tribological behaviors.In this study,GLC and two types of DLC coatings were deposited on GCr15 substrate for investigation.The friction and wear properties of self-mated and steel-mated pairs were evaluated.Two temperatures(25 and 90℃),three lubrication conditions(base oil,molybdenum dithiocarbamate(MoDTC)-containing oil,MoDTC+zinc dialkyldithiophosphate(ZDDP)-containing oil),and high Hertz contact stress(2.41 GPa)were applied in the experiments.The results showed that high temperature promoted the effect of ZDDP on steel-mated pairs,but increased wear under base oil lubrication.The increased wear for steel-mated pairs lubricated by MoDTC-containing oil was due to abrasive wear probably caused by MoO_(3) andβ-FeMoO_(4).It was also found that in most cases,the tribological properties of self-mated pairs were better than those of steel-mated pairs.
文摘Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.
基金This work was supported by Special Fund for Local Science and Technology Development from the Ministry of Science and Technology of China(2020ZYD053)Science and Technology Planning Project of Zigong(2019YYJC22)Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities(2020JXY05).
文摘A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.
基金Our work is supported by the Natural Science Fund of Jiangsu Province(BK20001414).
文摘In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.
基金National Natural Science Foundation of China (10 2 42 0 0 110 172 0 86) Chinese Academ y of Sciences (KJCX2 -SW-L2 )
文摘The diamond-like carbon (DLC) films with different thicknesses on 9Crl8bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickersindentation, nanoin-dentation and nanoscratch tests were used to characterize the DLC films with awide range of applied loads. Mechanical and tribological behaviors of these submicron films wereinvestigated and interpreted. The hardnesses of 9Cr18 and DLC. determined by nanoindentation, areapproximately 8GPa and 60GPa respectively; their elastic moduli are approximately 250GPa and 600GParespectively. The friction coefficients of 9Cr18, DLC, organic coating, determined by nanoscratch,are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation andnanoscratch tests can provide more information about the near-surface elastic-plastic deformation,friction and wear properties. The correlation of mechanical properties and scratch resistance of DLCfilms on 9Cr18 steels can provide an assessment for the load-carrying capacity and wear resistance.
文摘Amorphous carbon films are deposited on the Mo film/ceramic substrates, which are pretreated by a laser spattering chiselling technique (2 line/mm), by using the microwave chemical vapour deposition technique. The films are characterized by x-ray diffraction, Raman spectrum, optical microscopy, and scanning electron microscopy. The experimental result indicates that the laser spattering chiselling pretreated techniques can essentially improve the field emission uniformity and the emission site density of the amorphous carbon thin film devices so that its emission site density can reach the level of actual application (undistinguishable by naked eye) from a broad well-proportioned emission area of 50mm × 50mm. This kind of device can show various digits and words clearly. The lowest turn-on field below 1 V/m, the emission current density over 5.0±0.1 mA/cm^2, and the highest luminance 1.0 × 10^3 cd/m^2 are obtained. Meanwhile, the role of the laser spattering chiselling techniques in improving the field emission properties of the amorphous carbon film are explained.
文摘In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.
基金This work was financially supported by the National Natural Science Foundation of China(No.51805519)the Natural Science Foundation for Distinguished Young Scholars of Gansu Province(No.20JR5RA572).
文摘Polyethylene glycol derived carbon quantum dots nanofluids were synthesized via a slow thermal oxidation process.The size of carbon quantum dots was ca.2 nm and had a decreasing trend with the increase of oxidation time.When used as lubricant in a diamond-like carbon film/bearing steel interface,the nanofluids achieved an ultra-low friction coefficient(μ≈0.02),much lower than that of original polyethylene glycol(μ=0.12).The worn surface analyses revealed that the nanofluids could effectively inhibit the tribo-oxidation of steel counterpart that occurred under original polyethylene glycol lubrication,and hence reduced the abrasion component of friction.Especially,the poly-hydroxyl carbon dots and oxidized polyethylene glycol species in nanofluids induced a hydroxyl-rich sliding interface via their tribochemical reactions with friction surfaces,which promoted the adsorption of polyethylene glycol molecules on sliding surfaces.Along with the mild corrosion wear of steel counterface,this shifted the boundary lubrication to a mixed/film lubrication regime,thereby achieving an ultra-low friction coefficient.The above results suggest that the polyethylene glycol derived carbon quantum dots nanofluids should be a quite excellent candidate lubricant for solid–liquid synergy lubrication based on diamond-like carbon films.
文摘The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.
基金The simulations in this work are supported by the High-Performance Computing Center of Central South University.
文摘Shear deformation mechanisms of diamond-like carbon(DLC)are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance,which further influences the improvement of the friction and wear performance of DLC.This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning(ML)techniques.It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks,causing the stick-slip patterns in shear force.In addition,cluster analysis showed that the sp2-sp3 transitions arise in the stick stage,while the sp3-sp2 transitions occur in the slip stage.In order to analyze the mechanisms governing the bond breaking/re-formation in these transitions,the Random Forest(RF)model in ML identifies that the kinetic energies of sp3 atoms and their velocities along the loading direction have the highest influence.This is because high kinetic energies of atoms can exacerbate the instability of the bonding state and increase the probability of bond breaking/re-formation.Finally,the RF model finds that the shear force of DLC is highly correlated to its potential energy,with less correlation to its content of sp3 atoms.Since the changes in potential energy are caused by the variances in the content of sp3 atoms and localized strains,potential energy is an ideal parameter to evaluate the shear deformation of DLC.The results can enhance the understanding of the shear deformation of DLC and support the improvement of its frictional and wear performance.
基金supported by the National Natural Science Foundation of China(No.82172408,81772314,and 81922045)the Original Exploration project(22ZR1480300)+5 种基金Outstanding Academic Leaders(Youth)project(21XD1422900)of Shanghai Science and Technology Innovation Action PlanPrinciple Investigator Innovation Team of Both Shanghai Sixth People’s Hospital and Shanghai Institute of Nutrition and Health,Shanghai Jiao Tong University Medical College“Two-hundred Talent”Program(No.20191829)The Second Three-Year Action Plan for Promoting Clinical Skills and Clinical Innovation in Municipal Hospitals of Shanghai Shenkang(No.SHDC2020CR4032)Shanghai Excellent Academic Leader ProgramShanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration(No.20DZ2254100)China Postdoctoral Science Foundation(2023M742347).
文摘Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.