In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologie...In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.展开更多
During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especial...During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.展开更多
More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties...More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal...The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.展开更多
基金The content in this review is financially supported by the National Key Research and Development Program of China(No.2016YFB0301100,2017YFF0209100)the National Science Foundation for Scientists of China(No.51531002,51474043,51701027,51971042,51901028)the Chongqing Academician Special Fund(cstc2018jcyj-yszxX0007,cstc2019yszxjcyjX0004).
文摘In the past two years,significant progresses have been achieved in high-performance cast and wrought magnesium and magnesium alloys,magnesium-based composites,advanced cast technologies,advanced processing technologies,and functional magnesium materials,such as Mg ion batteries,hydrogen storage Mg materials,bio-magnesium alloys,etc.Great contributions to the development of new magnesium alloys and their processing technologies have been made by Chongqing University,Shanghai Jiaotong University,Chinese Academy of Sciences,Helmholtz Zentrum Geesthacht,Queensland University,Brunel University,etc.This review paper is aimed to summarize the latest important advances in cast magnesium alloys,wrought magnesium alloys and functional magnesium materials worldwide in 2018–2019,including both the development of new materials and the innovation of their processing technologies.Based on the issues and challenges identified here,some future research directions are suggested,including further development of high-performance magnesium alloys having high strength and superior plasticity together with high corrosion resistance and low cost,and fundamental research on the phase diagram,diffusion,precipitation,etc.,as well as the development of advanced welding and joining technology.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.51775334,51821001 and 51701124)National Key Research and Development Program of China(Grant No.2016YFB0701205)+3 种基金China Postdoctoral Science Foundation(Grant No.2020M671360)Natural Science Foundation for Young of Jiangsu Province(Grant No.BK20190863)Jiangsu“Mass Innovation and Entrepreneurship”Talent Program(Shuang Chuang Ph.Ds,2018)Open Research Fund of the State Key Laboratory of Metal Matrix Composites(Grant No.sklmmc-kf18-08).
文摘During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.
基金support from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)National Natural Science Foundation of China(NSFC)(No.52071036)+1 种基金Key Research and Development Program of Zhejiang Province(No.2021C01086)the Fundamental Research Funds for the Central Universities Project(Nos.2021CDJCGJ009,SKLMT-ZZKT-2021M11)is also gratefully acknowledged.
文摘More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.
基金Project(05KJD6010110) supported by the Natural Science Foundation of the Education Commission of Jiangsu Province,ChinaProject(2005005) supported by the Science and Technology Foundation of the Environmental Protection Bureau of Jiangsu Province,China
文摘The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method.The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC)were investigated.The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%?92.6% and the removal efficiency of TOC is 42.8%?78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0?2.5 after 120 min treatment.The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate,2-naphthol,2,7-dihydroxynaphthalene,1-naphthamine,1-naphthol-8-sulfonic acid in turn.It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.