The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X...The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.展开更多
文摘针对ZM5铸镁缺陷补焊难题,开展光纤激光填丝焊接工艺特性研究,并采用SEM及EDS对焊缝组织进行分析。结果表明,激光束离焦量增加至20 mm时,由激光深熔焊变为热导焊模式,焊缝变宽,熔深变小,稀释率降至0.65,焊缝成形良好;随激光功率增加,稀释率变大,润湿角变大;焊接速度减小,稀释率变小。激光功率为2.1 k W,焊接速度v=0.5 m/min,稀释率为0.52,焊缝成形良好。激光热导焊接热输入小,焊缝组织晶粒细化,先析出α-Mg相基体弥散分布β-Mg17Al12与δ-Mg共晶相。
基金Project(2004BB8429) supported by Chongqing Municipal Science and Technology Commission, China
文摘The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.