This work shows how the sesamin and sesamolin in sesame seed can be extracted, enriched and purified by the related technologies of supercritical carbon dioxide. Sesame oil is first obtained from the sesame seeds by s...This work shows how the sesamin and sesamolin in sesame seed can be extracted, enriched and purified by the related technologies of supercritical carbon dioxide. Sesame oil is first obtained from the sesame seeds by supercritical carbon dioxide extraction (SFE);lignans in the oil are enriched and precipitated as the top product by supercritical fluid fractionation technology (SFF);the crude lignans are then separated by supercritical fluid-simulated moving bed chromatography (SF-SMB) to obtain pure sesamin and sesamolin. The simulated moving bed is a continuous chromatography;the use of supercritical carbon dioxide as the desorbent simplifies the downstream treatment. By experimental validation, this work also shows that replacing liquid by SF as the desorbent for the SMB automatically creates a gradient operation for the SMB and enlarges the separable range of the operating conditions. Both the design and operation of the SF-SMB are introduced in this paper. The application of SF-SMB to the separation of sesamin and sesamolin provides a novel example for demonstrating the diversity of SF and the potential applications for the production of natural products and the development of botanical drugs.展开更多
本实验探究不同因素对高温条件下芝麻林素转化为芝麻酚的影响及其转化动力学,并通过液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)分析相关转化路径。结果表明:丙三醇是芝麻林素转化为芝麻酚的理想介质...本实验探究不同因素对高温条件下芝麻林素转化为芝麻酚的影响及其转化动力学,并通过液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)分析相关转化路径。结果表明:丙三醇是芝麻林素转化为芝麻酚的理想介质,反应温度和反应时间对芝麻酚生成率影响显著;在160~200℃范围内,芝麻林素的转化符合一级动力学方程特征,且反应速率常数与温度呈正相关,半衰期和十分之一衰期与温度呈负相关,通过阿伦尼乌斯方程计算出该反应活化能为(104.50±4.32)kJ/mol;LC-MS/MS分析结果表明以芝麻林素为底物的反应系统包括芝麻酚的生成和转化两条转化路径。展开更多
文摘This work shows how the sesamin and sesamolin in sesame seed can be extracted, enriched and purified by the related technologies of supercritical carbon dioxide. Sesame oil is first obtained from the sesame seeds by supercritical carbon dioxide extraction (SFE);lignans in the oil are enriched and precipitated as the top product by supercritical fluid fractionation technology (SFF);the crude lignans are then separated by supercritical fluid-simulated moving bed chromatography (SF-SMB) to obtain pure sesamin and sesamolin. The simulated moving bed is a continuous chromatography;the use of supercritical carbon dioxide as the desorbent simplifies the downstream treatment. By experimental validation, this work also shows that replacing liquid by SF as the desorbent for the SMB automatically creates a gradient operation for the SMB and enlarges the separable range of the operating conditions. Both the design and operation of the SF-SMB are introduced in this paper. The application of SF-SMB to the separation of sesamin and sesamolin provides a novel example for demonstrating the diversity of SF and the potential applications for the production of natural products and the development of botanical drugs.
文摘本实验探究不同因素对高温条件下芝麻林素转化为芝麻酚的影响及其转化动力学,并通过液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)分析相关转化路径。结果表明:丙三醇是芝麻林素转化为芝麻酚的理想介质,反应温度和反应时间对芝麻酚生成率影响显著;在160~200℃范围内,芝麻林素的转化符合一级动力学方程特征,且反应速率常数与温度呈正相关,半衰期和十分之一衰期与温度呈负相关,通过阿伦尼乌斯方程计算出该反应活化能为(104.50±4.32)kJ/mol;LC-MS/MS分析结果表明以芝麻林素为底物的反应系统包括芝麻酚的生成和转化两条转化路径。