We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of ...We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.展开更多
TiO 2 nanoparticle film catalysts with different thicknesses were prepared by plasma enhanced chemical vapor deposition(PECVD) method and the surfaces were subsequently treated by TiCl 4 or O 2 plasma. Two kinds of Ti...TiO 2 nanoparticle film catalysts with different thicknesses were prepared by plasma enhanced chemical vapor deposition(PECVD) method and the surfaces were subsequently treated by TiCl 4 or O 2 plasma. Two kinds of TiO 2 films with different surface properties were obtained. Their surface microstructures and energy levels of surface states were tested by AFM, XRD, SPS. The photocatalytic activities of the catalysts were determined via photodegradation experiments of phenol. The results demonstrated that photocatalytic activities of samples whose surface was treated by O 2 plasma were greater than those treated by TiCl 4 plasma. Moreover, photodegradation ratio of phenol during the first hour catalyzed by 0.17 μm thickness TiO 2 nanoparticle film was greater than other samples. Especially, the difference of photocatalytic activities of TiO 2 nanoparticle films treated by TiCl 4 or O 2 plasma was respectively explained by energy band theory.展开更多
TiO2 nanoparticulate films were prepared by means of Plasma-enhanced Chemical Vapor Deposition (PECVD). By further surface treatment by TiCl4 or O2 plasma, films with dif- ferent surface properties were obtained. It...TiO2 nanoparticulate films were prepared by means of Plasma-enhanced Chemical Vapor Deposition (PECVD). By further surface treatment by TiCl4 or O2 plasma, films with dif- ferent surface properties were obtained. It was found that treatment by TiCl4 plasma enhanced the amount of Ti3+ suiface state and Ti dislocation of the film, detected by the surface photovoltage spectroscopy, while O2 plasma surface treating enhanced its amount of O2 surface state. It was also indicated by the H2O adsorption experiment that film treated by O2 plasma had larger separation efficiency for photogenerated carriers than the one treated by TiCl4 plasma.展开更多
采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应...采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应力等性能的影响,得到适合制作接触式射频MEMS开关中悬梁的氮化硅薄膜的最佳工艺条件。展开更多
文摘We prepared TiO 2(anatase) and Sn doped TiO 2 nanoparticlate film by Plasma enhanced Chemical Vapor Deposition(PECVD) method. XRD and XPS experiments showed that Sn was doped into the lattice of TiO 2 with a ratio of n (Sn)∶ n (Ti)=1∶10 . Sn doping largely enhanced the photocatalytic activity of TiO 2 film for phenol degradation. The enhancement in photoactivity by doping was discussed, based on the characterization with AFM, FTIR and EFISPS. Sn doping produced localized level of Sn 4+ in the band gap of TiO 2, about 0.4 eV below the conduction band, which could capture photogenerated electrons and reduce O 2 adsorbed on the surface of TiO 2 film, thus accelerated the photocatalytic reaction.
文摘TiO 2 nanoparticle film catalysts with different thicknesses were prepared by plasma enhanced chemical vapor deposition(PECVD) method and the surfaces were subsequently treated by TiCl 4 or O 2 plasma. Two kinds of TiO 2 films with different surface properties were obtained. Their surface microstructures and energy levels of surface states were tested by AFM, XRD, SPS. The photocatalytic activities of the catalysts were determined via photodegradation experiments of phenol. The results demonstrated that photocatalytic activities of samples whose surface was treated by O 2 plasma were greater than those treated by TiCl 4 plasma. Moreover, photodegradation ratio of phenol during the first hour catalyzed by 0.17 μm thickness TiO 2 nanoparticle film was greater than other samples. Especially, the difference of photocatalytic activities of TiO 2 nanoparticle films treated by TiCl 4 or O 2 plasma was respectively explained by energy band theory.
文摘TiO2 nanoparticulate films were prepared by means of Plasma-enhanced Chemical Vapor Deposition (PECVD). By further surface treatment by TiCl4 or O2 plasma, films with dif- ferent surface properties were obtained. It was found that treatment by TiCl4 plasma enhanced the amount of Ti3+ suiface state and Ti dislocation of the film, detected by the surface photovoltage spectroscopy, while O2 plasma surface treating enhanced its amount of O2 surface state. It was also indicated by the H2O adsorption experiment that film treated by O2 plasma had larger separation efficiency for photogenerated carriers than the one treated by TiCl4 plasma.
文摘采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应力等性能的影响,得到适合制作接触式射频MEMS开关中悬梁的氮化硅薄膜的最佳工艺条件。