A series of La2O3-promoted Li-Mn/WO3/TiO2 catalysts were prepared by varying the concentration of La2O3 promoter.The effect of La2O3 promoter on its properties and catalytic performance for OCM was characterized with ...A series of La2O3-promoted Li-Mn/WO3/TiO2 catalysts were prepared by varying the concentration of La2O3 promoter.The effect of La2O3 promoter on its properties and catalytic performance for OCM was characterized with XRD,FT-IR,O2-TPD,Raman,CO2-TPD,H2-TPR,XPS and CH4-TPSR,The results show that all the La2O3-promoted Li-Mn/WO3/TiO2 catalysts possess a larger amount of strong basic sites and more abundant chemisorbed oxygen species in comparison with Li-Mn/WO3/TiO2,which is beneficial to OCM reaction.Furthermore,La2O3 promoter can enhance the mobility of the oxygen species and the Mn species redox ability,which can also be favorable for the improvement of the catalytic performance for OCM,Due to the optimal synergistic interaction of these factors,5 wt%La2O3-Li-Mn/WO3/TiO2 exhibits the best performance among all the catalysts,on which the highest C2 yield of 19.2% is achieved at 750℃.展开更多
The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model...The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model. The reaction was assumed to take place both in the gas phase and on the catalytic surface. Kinetic rate constants were experimentally obtained using a ten step kinetic model. The simulation results agree quite well with the data of OCM experiments, which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process. The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K. The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.展开更多
A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer ...A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.展开更多
The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxyge...The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.展开更多
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at...The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800℃, atmospheric pressure and under GHSV = 13200 ml·gCat^-1·h^-1.Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective catalysts for OCM reaction. Ceria with high oxygen storage capacity is selected as a proper oxygen activator, providing a higher concentration of the oxy-anion species which is suitable for OCM reaction and compared with manganese oxide. Electrical conductivity of the catalysts was measured in OCM reaction under oxidizing atmosphere, i.e. in the absence of methane. It was found that the trimetallic catalysts, i.e. the catalysts having sodium, tungsten and Mn or Ce species, exhibited similar crystalline structures and morphologies, which lead to suitable bulk properties for the formation of an active and selective catalyst. However, tungsten had significant effect on the texture and redox properties of the catalysts. It was also shown that the crystalline structure of the bimetallic (Na+Mn or Ce)/SiO2 samples was quite different. This reveals that the metal oxides have significant effect on the extent of crystallization, taking place in the course of interaction of sodium with silica support. Similar conductivities and catalytic performances of (Na2WO4+Mn or Ce)/SiO2 catalysts propose that the ability of Na2WO4/SiO2 for utilizing oxy-anions formed in presence of different metal oxides is limited.展开更多
With the objective to develop catalysts having application potential for oxidative coupling of methane (OCM) at relatively lower temperature. A series of Ln2Zr2O7 compounds with varied rare earth A sites have been pre...With the objective to develop catalysts having application potential for oxidative coupling of methane (OCM) at relatively lower temperature. A series of Ln2Zr2O7 compounds with varied rare earth A sites have been prepared by a co-precipitation method. XRD and Raman have proved that pure Ln2Zr2O7 compounds have been successfully prepared for all the catalysts. By decreasing the rA/rB ratio, their crystalline structure transform from an ordered pyrochlore (La2Zr2O7) to a less ordered pyrochlore (Pr2Zr2O7 and Sm2Zr2O7) and eventually to a defective cubic fluorite phase (Y2Zr2O7). H2-TPR, O2-TPD and XPS have testified that the amount of surface active O2-species follows the order of La2Zr2O7>Pr2Zr2O7>Sm2Zr2O7 > Y2Zr2O7, which is well consistent with the reaction performance, indicating that the abundance of surface O2- sites is a critical factor influencing the reaction performance. CO2-TPD has demonstrated that a better catalyst generally possesses a larger amount of surface moderate alkaline sites, which is another factor to affect the reaction performance. It is concluded that the concerted interaction between the two types of surface active sites controls the reaction performance of the Ln2Zr2O7 catalysts. In comparison with the state-of-the art Mn/Na2WO4/SiO2, La2Zr2O7, the best catalyst, exhibits much improved reaction performance below 750 ℃.展开更多
Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially M...Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis.展开更多
基金supported by the Petro China Innovation Foundation(2016D-5007-0506)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09030101).
文摘A series of La2O3-promoted Li-Mn/WO3/TiO2 catalysts were prepared by varying the concentration of La2O3 promoter.The effect of La2O3 promoter on its properties and catalytic performance for OCM was characterized with XRD,FT-IR,O2-TPD,Raman,CO2-TPD,H2-TPR,XPS and CH4-TPSR,The results show that all the La2O3-promoted Li-Mn/WO3/TiO2 catalysts possess a larger amount of strong basic sites and more abundant chemisorbed oxygen species in comparison with Li-Mn/WO3/TiO2,which is beneficial to OCM reaction.Furthermore,La2O3 promoter can enhance the mobility of the oxygen species and the Mn species redox ability,which can also be favorable for the improvement of the catalytic performance for OCM,Due to the optimal synergistic interaction of these factors,5 wt%La2O3-Li-Mn/WO3/TiO2 exhibits the best performance among all the catalysts,on which the highest C2 yield of 19.2% is achieved at 750℃.
文摘The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model. The reaction was assumed to take place both in the gas phase and on the catalytic surface. Kinetic rate constants were experimentally obtained using a ten step kinetic model. The simulation results agree quite well with the data of OCM experiments, which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process. The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K. The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.
基金supported by the National Basic Research Program of China (Project No. 2005CB221405)
文摘A novel particle/metal-based monolithic catalysts dual-bed reactor with beds-interspace supplementary oxygen is constructed comprising of the upper-layer 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst and the under-layer 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst as well as a side tube in the interspaces of two layers for supplementing 02. The reaction performance of oxidative coupling of methane (OCM) in the dual-bed reactor system is evaluated. The effects of the reaction parameters such as feed CH4/O2 ratio, reaction temperature and side tube feed 02 flowrate on the catalytic performance are investigated. The results indicate that the suggested mode of dual-bed reactor exhibits an excellent performance for OCM. CH4 conversion of 33.2%, C2H4 selectivity of 46.5% and C2 yield of 22.5% could be obtained, which have been increased by 6.4%, 4.1% and 5.5%, respectively, as compared with 5 wt%Na2WO4-2 wt%Mn/SiO2 particle catalyst in a single-bed reactor and increased by 10.7%, 31.9% and 17.7%, respectively, as compared with 3 wt%Ce-5 wt%Na2WO4-2 wt%Mn/SBA-15/Al2O3/FeCrA1 metal-based monolithic catalyst in a single-bed reactor. The effective promotion of OCM performance in the reactor would supply a valuable reference for the industrialization of OCM process.
基金supported by the Iran Polymer and Petrochemical Institute (IPPI)
文摘The reaction kinetics of oxidative coupling of methane catalyzed by perovskite was studied in a fixed bed flow reactor.At atmospheric pressure,the reactions were carried out at 725,750 and 775℃,inlet methane to oxygen ratios of 2 to 4.5 and gas hourly space velocity (GHSV) of 100 min^-1.Correlation of the kinetic data has been performed with the proposed mechanisms.The selected equations have been regressed with experimental data accompanied by genetic algorithm (GA) in order to obtain optimized parameters.After investigation the Langmuir-Hinshelwood mechanism was selected as the best mechanism,and Arrhenius and adsorption parameters of this model were obtained by linear regression.In this research the Marquardt algorithm was also used and its results were compared with those of genetic algorithm.It should be noted that the Marquardt algorithm is sensitive to the selection of initial values and there is possibility to trap in a local minimum.
文摘The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800℃, atmospheric pressure and under GHSV = 13200 ml·gCat^-1·h^-1.Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective catalysts for OCM reaction. Ceria with high oxygen storage capacity is selected as a proper oxygen activator, providing a higher concentration of the oxy-anion species which is suitable for OCM reaction and compared with manganese oxide. Electrical conductivity of the catalysts was measured in OCM reaction under oxidizing atmosphere, i.e. in the absence of methane. It was found that the trimetallic catalysts, i.e. the catalysts having sodium, tungsten and Mn or Ce species, exhibited similar crystalline structures and morphologies, which lead to suitable bulk properties for the formation of an active and selective catalyst. However, tungsten had significant effect on the texture and redox properties of the catalysts. It was also shown that the crystalline structure of the bimetallic (Na+Mn or Ce)/SiO2 samples was quite different. This reveals that the metal oxides have significant effect on the extent of crystallization, taking place in the course of interaction of sodium with silica support. Similar conductivities and catalytic performances of (Na2WO4+Mn or Ce)/SiO2 catalysts propose that the ability of Na2WO4/SiO2 for utilizing oxy-anions formed in presence of different metal oxides is limited.
基金the Natural Science Foundation of China (Nos. 21567016, 21566022, 21666020)the Natural Science Foundation of Jiangxi Province (Nos. 20181ACB20005, 20171BAB213013 and 20181BAB203017)+4 种基金the Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis(No. 20181BCD40004) the Education Department of Jiangxi Province (Nos. GJJ150016, GJJ150085 and KJLD14005)the China Postdoctoral Science Foundation(No. 2018M631294)Innovation Fund Designated for Undergraduate Students of Nanchang University of China (No. 201802369)the Graduate Student Creativity Funding of Nanchang University(No. 201802062)
文摘With the objective to develop catalysts having application potential for oxidative coupling of methane (OCM) at relatively lower temperature. A series of Ln2Zr2O7 compounds with varied rare earth A sites have been prepared by a co-precipitation method. XRD and Raman have proved that pure Ln2Zr2O7 compounds have been successfully prepared for all the catalysts. By decreasing the rA/rB ratio, their crystalline structure transform from an ordered pyrochlore (La2Zr2O7) to a less ordered pyrochlore (Pr2Zr2O7 and Sm2Zr2O7) and eventually to a defective cubic fluorite phase (Y2Zr2O7). H2-TPR, O2-TPD and XPS have testified that the amount of surface active O2-species follows the order of La2Zr2O7>Pr2Zr2O7>Sm2Zr2O7 > Y2Zr2O7, which is well consistent with the reaction performance, indicating that the abundance of surface O2- sites is a critical factor influencing the reaction performance. CO2-TPD has demonstrated that a better catalyst generally possesses a larger amount of surface moderate alkaline sites, which is another factor to affect the reaction performance. It is concluded that the concerted interaction between the two types of surface active sites controls the reaction performance of the Ln2Zr2O7 catalysts. In comparison with the state-of-the art Mn/Na2WO4/SiO2, La2Zr2O7, the best catalyst, exhibits much improved reaction performance below 750 ℃.
基金supported by the Deutsche Forschungsgemeinschaft (DFG)
文摘Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis.