Selective growth of oxidation coating was observed with Al18B4O33 crystal whisker as reinforced phase) on Mg matrix composite Al18B4O33w/AZ91 (a composite when this composite was treated by microarc oxidation (MAO...Selective growth of oxidation coating was observed with Al18B4O33 crystal whisker as reinforced phase) on Mg matrix composite Al18B4O33w/AZ91 (a composite when this composite was treated by microarc oxidation (MAO) technique, and then the role of Al18B4O33 whisker in the process of MAO was analyzed. The protective properties of MAO coating also were investigated. Scanning electron microscopy (SEM) was used to characterize the existing state of Al18B4O33 whisker in MAO process and the microstructure of MAO coating. Corrosion resistance of the bare and coated composite was evaluated by immersion corrosion test and potentiodynamic polarizing test. Wear resistance of MAO coating was investigated by a ball-on-disc friction and wear tester. The results showed that sparking discharge did not occur on Al18B4O33 whisker and the whisker existed in the coating as a heterogeneous phase when MAO coating grew on the composite; then the whisker would be covered gradually with growing thick of the coating. Corrosion current density of the coated composite was decreased by 4 orders of magnitude compared with that of the uncoated composite; excellent corrosion resistance was closely related to the compact whisker-coating interface since Al18B4O33 whisker did not induce structural defects. The coating also exhibited high wear resistance and a slight adhesive wear tendency with bearing steel as its counterpart material.展开更多
In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the p...In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.展开更多
A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morpholo...A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.展开更多
The pitting corrosion behavior of AZ91 alloy before and after micro-oxidation treatment in 3.5%Na Cl solution was investigated by cyclic potentiodynamic polarization(CPDP)and optical and SEM observations of corroded s...The pitting corrosion behavior of AZ91 alloy before and after micro-oxidation treatment in 3.5%Na Cl solution was investigated by cyclic potentiodynamic polarization(CPDP)and optical and SEM observations of corroded surfaces at different polarization potentials.The CPDP results show that both the alloy and the MAO-coated alloy suffer from pitting corrosion and it is difficult for pits to stop growth once the pits initiates.It is revealed that the air-formed Mg O film on AZ91 alloy,the MAO coating along with corrosion products(mainly Mg(OH))formed during CPDP can significantly influence the kinetics of the redox reactions of Mg,and further influence the propagation behavior of pitting corrosion.The optical and SEM images show that the corrosion products on AZ91 alloy are dense and protective but on the MAO-coated corrosion products are very loose.Such observations support the analyses of CPDP results that pits on AZ91 alloy spread to the width whereas pits on MAO-coated alloy propagate to the depth.Overall,pitting corrosion on the MAO-coated alloy can be very severe once the coating ruptures and post-treatments are necessary to provide a promising corrosion protection for the Mg alloys.展开更多
基金supported by the National Natural Science Foundation of China(No.51001036)the Fundamental Research Funds for the Central Universities(Nos. HEUCFR1021 and HEUCF201210001)
文摘Selective growth of oxidation coating was observed with Al18B4O33 crystal whisker as reinforced phase) on Mg matrix composite Al18B4O33w/AZ91 (a composite when this composite was treated by microarc oxidation (MAO) technique, and then the role of Al18B4O33 whisker in the process of MAO was analyzed. The protective properties of MAO coating also were investigated. Scanning electron microscopy (SEM) was used to characterize the existing state of Al18B4O33 whisker in MAO process and the microstructure of MAO coating. Corrosion resistance of the bare and coated composite was evaluated by immersion corrosion test and potentiodynamic polarizing test. Wear resistance of MAO coating was investigated by a ball-on-disc friction and wear tester. The results showed that sparking discharge did not occur on Al18B4O33 whisker and the whisker existed in the coating as a heterogeneous phase when MAO coating grew on the composite; then the whisker would be covered gradually with growing thick of the coating. Corrosion current density of the coated composite was decreased by 4 orders of magnitude compared with that of the uncoated composite; excellent corrosion resistance was closely related to the compact whisker-coating interface since Al18B4O33 whisker did not induce structural defects. The coating also exhibited high wear resistance and a slight adhesive wear tendency with bearing steel as its counterpart material.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301105)the National Natural Science Foundation of China(No.51804190)+4 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2021ME240)the Youth Science Funds of Shandong Academy of Sciences,China(No.2020QN0022)the Shandong Province Key Research and Development Plan,China(Nos.2019GHZ019 and 2019JZZY020329)the Jinan Science&Technology Bureau,China(No.2019GXRC030)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)。
文摘In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.
基金Project (gf200901002) support by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.
基金the Fund of National Key Laboratory of Remanufacturing[Grant 614005180101]。
文摘The pitting corrosion behavior of AZ91 alloy before and after micro-oxidation treatment in 3.5%Na Cl solution was investigated by cyclic potentiodynamic polarization(CPDP)and optical and SEM observations of corroded surfaces at different polarization potentials.The CPDP results show that both the alloy and the MAO-coated alloy suffer from pitting corrosion and it is difficult for pits to stop growth once the pits initiates.It is revealed that the air-formed Mg O film on AZ91 alloy,the MAO coating along with corrosion products(mainly Mg(OH))formed during CPDP can significantly influence the kinetics of the redox reactions of Mg,and further influence the propagation behavior of pitting corrosion.The optical and SEM images show that the corrosion products on AZ91 alloy are dense and protective but on the MAO-coated corrosion products are very loose.Such observations support the analyses of CPDP results that pits on AZ91 alloy spread to the width whereas pits on MAO-coated alloy propagate to the depth.Overall,pitting corrosion on the MAO-coated alloy can be very severe once the coating ruptures and post-treatments are necessary to provide a promising corrosion protection for the Mg alloys.
基金supported by the National Natural Science Foundation of China (Nos. 52001034, 51871030)Changzhou Sci & Tech Program, China (No. CJ20200078)+2 种基金Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 20KJB430013)the Top-notch Academic Programs of Jiangsu Higher Education Institutions, China (TAPP)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)