传统的基于PPP(precise point positioning)模式的定轨方法采用浮点解,导致其定轨精度及可靠性较双差固定解稍差。为了进一步提高PPP模式事后定轨的精度和可靠性,利用2012年1月2~7日全球IGS跟踪站数据计算出当天所有卫星的宽巷和窄巷FC...传统的基于PPP(precise point positioning)模式的定轨方法采用浮点解,导致其定轨精度及可靠性较双差固定解稍差。为了进一步提高PPP模式事后定轨的精度和可靠性,利用2012年1月2~7日全球IGS跟踪站数据计算出当天所有卫星的宽巷和窄巷FCB产品,实现了GRACE卫星固定PPP整数模糊度的精密定轨。并将定轨结果分别与GFZ事后精密轨道、K波段测距结果进行比较,分析其内外符合精度。实验结果表明:与GFZ提供的事后精密轨道相比,GRACE-A卫星单天轨道固定解的精度为R方向2~3cm,T方向大部分优于2cm,N方向优于2cm,较之浮点解的定轨结果3个方向分别改善了约19%、30%、50%;GRACE-B卫星3个方向精度分别为2~3cm、2cm左右、1~2cm,较之浮点解各方向也有同等程度的改善。与K波段测距结果相比,浮点解的KBR残差STD均值为22.6mm,固定解为16.4mm,比浮点解提高了约28%。可见,PPP模糊度固定解明显改善了低轨卫星的定轨精度,能提供更可靠的轨道服务。展开更多
K频段微波测距(KBR)系统是低-低卫星跟踪卫星(SST-LL)重力测量卫星的关键载荷之一,其性能直接影响地球重力场空间变化率的测定结果,而KBR系统中正交下变频过程引入的幅相不平衡误差对系统测距精度有着重要影响。针对幅相不平衡误差对KB...K频段微波测距(KBR)系统是低-低卫星跟踪卫星(SST-LL)重力测量卫星的关键载荷之一,其性能直接影响地球重力场空间变化率的测定结果,而KBR系统中正交下变频过程引入的幅相不平衡误差对系统测距精度有着重要影响。针对幅相不平衡误差对KBR系统测距精度的影响,通过分析幅相不平衡误差在KBR系统中的传递过程,并结合MATLAB软件建立了KBR幅相不平衡误差仿真模型,理论分析和仿真结果互相验证得出幅相不平衡误差与系统测距精度之间的定量关系。建议KBR系统设计中:1δ相位抖动不平衡控制在1度以内,固定相位不平衡控制在5度以内,1δ幅度抖动不平衡控制在0.5 d B以内,固定幅度不平衡控制在0.5 d B以内。展开更多
文摘传统的基于PPP(precise point positioning)模式的定轨方法采用浮点解,导致其定轨精度及可靠性较双差固定解稍差。为了进一步提高PPP模式事后定轨的精度和可靠性,利用2012年1月2~7日全球IGS跟踪站数据计算出当天所有卫星的宽巷和窄巷FCB产品,实现了GRACE卫星固定PPP整数模糊度的精密定轨。并将定轨结果分别与GFZ事后精密轨道、K波段测距结果进行比较,分析其内外符合精度。实验结果表明:与GFZ提供的事后精密轨道相比,GRACE-A卫星单天轨道固定解的精度为R方向2~3cm,T方向大部分优于2cm,N方向优于2cm,较之浮点解的定轨结果3个方向分别改善了约19%、30%、50%;GRACE-B卫星3个方向精度分别为2~3cm、2cm左右、1~2cm,较之浮点解各方向也有同等程度的改善。与K波段测距结果相比,浮点解的KBR残差STD均值为22.6mm,固定解为16.4mm,比浮点解提高了约28%。可见,PPP模糊度固定解明显改善了低轨卫星的定轨精度,能提供更可靠的轨道服务。
文摘K频段微波测距(KBR)系统是低-低卫星跟踪卫星(SST-LL)重力测量卫星的关键载荷之一,其性能直接影响地球重力场空间变化率的测定结果,而KBR系统中正交下变频过程引入的幅相不平衡误差对系统测距精度有着重要影响。针对幅相不平衡误差对KBR系统测距精度的影响,通过分析幅相不平衡误差在KBR系统中的传递过程,并结合MATLAB软件建立了KBR幅相不平衡误差仿真模型,理论分析和仿真结果互相验证得出幅相不平衡误差与系统测距精度之间的定量关系。建议KBR系统设计中:1δ相位抖动不平衡控制在1度以内,固定相位不平衡控制在5度以内,1δ幅度抖动不平衡控制在0.5 d B以内,固定幅度不平衡控制在0.5 d B以内。