测绘领域诸多实际应用中系数矩阵和观测向量具有结构特征,即系数矩阵和观测向量中包含固定量(甚至固定列)和随机量,并且不同位置的随机量线性相关。针对这个问题,从变量误差(errors-in-variables,EIV)函数模型出发,首先,将系数矩阵和观...测绘领域诸多实际应用中系数矩阵和观测向量具有结构特征,即系数矩阵和观测向量中包含固定量(甚至固定列)和随机量,并且不同位置的随机量线性相关。针对这个问题,从变量误差(errors-in-variables,EIV)函数模型出发,首先,将系数矩阵和观测向量构成的增广矩阵表示为仿射函数形式,并采用变量投影法对函数模型进行重构;然后,利用拉格朗日法推导出了一种结构总体最小二乘(structured total least squares,STLS)估计算法。算例分析结果表明,该算法与已有能够解决系数矩阵和观测向量存在结构特征的加权或结构总体最小二乘算法估计结果一致,说明了该算法的有效性,同时阐明了该算法与已有相关算法的关系。展开更多
文摘测绘领域诸多实际应用中系数矩阵和观测向量具有结构特征,即系数矩阵和观测向量中包含固定量(甚至固定列)和随机量,并且不同位置的随机量线性相关。针对这个问题,从变量误差(errors-in-variables,EIV)函数模型出发,首先,将系数矩阵和观测向量构成的增广矩阵表示为仿射函数形式,并采用变量投影法对函数模型进行重构;然后,利用拉格朗日法推导出了一种结构总体最小二乘(structured total least squares,STLS)估计算法。算例分析结果表明,该算法与已有能够解决系数矩阵和观测向量存在结构特征的加权或结构总体最小二乘算法估计结果一致,说明了该算法的有效性,同时阐明了该算法与已有相关算法的关系。