A newcontrolled seed metering unit was designed and mounted on a common grain drill for direct seeding of wheat(DSW).It comprised the following main parts:(a)a variable-rate controlled direct current motor(DCM)as seed...A newcontrolled seed metering unit was designed and mounted on a common grain drill for direct seeding of wheat(DSW).It comprised the following main parts:(a)a variable-rate controlled direct current motor(DCM)as seed metering shaft driver,(b)two digital encoders for sensing the rotational speed of supplemental ground wheel(SGW)and seed metering shaft and(c)a control box to handle and process the data of the unit.According to the considered closed-loop control system,the designed control box regularly checked the revolution per minute(RPM)of seed metering shaft,as operation feedback,using its digital encoder output.The seeding ratewas determined based on the calculated error signal and output signal of the digital encoder of the SGW.A field with four different levels of wheat stubble coverage(10%,30%,40%and 50%)was selected for evaluation of the fabricated seed metering unit(FSMU).The dynamic tests were conducted to compare the performance of installed FSMU on the grain drill and equipped grain drill with common seed metering unit(CSMU)at three forward speeds of 4,6 and 8(Km/h)for DSW.Results of the FSMU assessment demonstrated that an increase in forwardspeed of grain drill(FSGD)and stubble coverage did not significantly affect the seeding rate in the grain drill forDSW.Using theFSMU reduced the coefficient of variation(CV)by approximately 50%.Consequently,applying the FSMU on the common grain drill led to a desirable seeding rate at different forward speeds of the grain drill and stubble existence.展开更多
By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured f...By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.展开更多
文摘A newcontrolled seed metering unit was designed and mounted on a common grain drill for direct seeding of wheat(DSW).It comprised the following main parts:(a)a variable-rate controlled direct current motor(DCM)as seed metering shaft driver,(b)two digital encoders for sensing the rotational speed of supplemental ground wheel(SGW)and seed metering shaft and(c)a control box to handle and process the data of the unit.According to the considered closed-loop control system,the designed control box regularly checked the revolution per minute(RPM)of seed metering shaft,as operation feedback,using its digital encoder output.The seeding ratewas determined based on the calculated error signal and output signal of the digital encoder of the SGW.A field with four different levels of wheat stubble coverage(10%,30%,40%and 50%)was selected for evaluation of the fabricated seed metering unit(FSMU).The dynamic tests were conducted to compare the performance of installed FSMU on the grain drill and equipped grain drill with common seed metering unit(CSMU)at three forward speeds of 4,6 and 8(Km/h)for DSW.Results of the FSMU assessment demonstrated that an increase in forwardspeed of grain drill(FSGD)and stubble coverage did not significantly affect the seeding rate in the grain drill forDSW.Using theFSMU reduced the coefficient of variation(CV)by approximately 50%.Consequently,applying the FSMU on the common grain drill led to a desirable seeding rate at different forward speeds of the grain drill and stubble existence.
基金Supported by National Natural Science Foundation of China(51991361,52074327,U1762212)Major Engineering Technology Field Tes Project of CNPC(2020F-45)。
文摘By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.