阻变式存储器(resistive random access memory,RRAM)是以材料的电阻在外加电场作用下可在高阻态和低阻态之间实现可逆转换为基础的一类前瞻性下一代非挥发存储器.它具有在32nm节点及以下取代现有主流Flash存储器的潜力,成为目前新型存...阻变式存储器(resistive random access memory,RRAM)是以材料的电阻在外加电场作用下可在高阻态和低阻态之间实现可逆转换为基础的一类前瞻性下一代非挥发存储器.它具有在32nm节点及以下取代现有主流Flash存储器的潜力,成为目前新型存储器的一个重要研究方向.但阻变式存储器的电阴转变机理不明确,制约它的进一步研发与应用.文章对阻变式存储器的体材料中几种基本电荷输运机制进行了归纳,总结了目前对阻变式存储器存储机理的理论模型.展开更多
To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. ...To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length.展开更多
文摘阻变式存储器(resistive random access memory,RRAM)是以材料的电阻在外加电场作用下可在高阻态和低阻态之间实现可逆转换为基础的一类前瞻性下一代非挥发存储器.它具有在32nm节点及以下取代现有主流Flash存储器的潜力,成为目前新型存储器的一个重要研究方向.但阻变式存储器的电阴转变机理不明确,制约它的进一步研发与应用.文章对阻变式存储器的体材料中几种基本电荷输运机制进行了归纳,总结了目前对阻变式存储器存储机理的理论模型.
基金Supported by the Natural Science Foundation of Jiangsu Province(No. L0313419913)
文摘To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length.