We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑...用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑了三个运动模之间的耦合效应。应用这模型得到了复制与转录的特性 ,说明了DNA的分型特征及D DNA A DNA以及B DNA Z展开更多
In this paper we study the traffic states and jams in vehicular traffic merging and bifurcating at a junction on a two-lane highway. The two-lane traffic model for the vehicular motion at the junction is presented whe...In this paper we study the traffic states and jams in vehicular traffic merging and bifurcating at a junction on a two-lane highway. The two-lane traffic model for the vehicular motion at the junction is presented where a jam occurs frequently due to merging, lane changing, and bifurcating. The traffic flow is called the weaving. At the weaving section, vehicles slow down and then move aside on the other lane for changing their direction. We derive the fundamental diagrams (flow-density diagrams) for the weaving traffic flow. The traffic states vary with the density, slowdown speed, and the fraction of vehicles changing the lane. The dynamical phase transitions occur. It is shown that the fundamental diagrams depend highly on the traffic states.展开更多
We investigate dynamical phase transitions that are induced by interspecies interaction in a two-species bosonic Josephson junctions (B J J), based on semi-classical theory. In zero-phase mode, similar to the case o...We investigate dynamical phase transitions that are induced by interspecies interaction in a two-species bosonic Josephson junctions (B J J), based on semi-classical theory. In zero-phase mode, similar to the case of a single-species B J J, we observe the well-known dynamical phase transition from Josephson oscillation to self-trapping, which can be induced by both enhanced repulsive and attractive interspecies interactions. In π phase mode, dynamical phase transitions are even more interesting and counter- intuitive. We characterize a dynamical phase transition with the merging of two separate phase space domains into one, which is induced by increasing repulsive interspecies interaction. On the other hand, we find that by increasing attractive interspecies interaction, a phase separation of two formally overlapped phase space domains will occur. At last, we reveal that these intriguing dynamical phase transitions are caused by different kinds of bifurcations.展开更多
Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σz for the biased sub-Ohmic spin-boson model. The small-ω behavior C...Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σz for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω) ∝ ω~s is found to be universal and independent of the bias ε and the coupling strength α(except at the quantum critical point α = αc and ε = 0). Our NRG data also show C(ω) ∝ χ~2ω~s for a wide range of parameters, including the biased strong coupling regime(ε = 0 and α 〉 αc), supporting the general validity of the Shiba relation. Close to the quantum critical point αc,the dependence of C(ω) on α and ε is understood in terms of the competition between ε and the crossover energy scale ω0^*of the unbiased case. C(ω) is stable with respect to ε for ε《ε^*. For ε 》ε^*, it is suppressed by ε in the low frequency regime. We establish that ε^*∝(ω0^*)^1/θ holds for all sub-Ohmic regime 0≤s 〈 1, with θ = 2/(3s) for 0 〈 s≤1/2 and θ = 2/(1 + s) for 1/2 〈 s 〈 1. The variation of C(ω) with α and ε is summarized into a crossover phase diagram on the α–ε plane.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the...The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.展开更多
The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to ...The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to the temperature range for both models: a low-temperature one where the distance in the long-time limit is finite and seems not to depend on the initial distance and the system size; a high-temperature one where the distance vanishes in the long-time limit. Using the finite size scaling method, the dynamical phase transition (damage spreading transition) temperature is obtained as for the Ising model.展开更多
We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to ...We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form■where the quasiparticle excitation spectraεkmay be smaller than 0 for some k and are asymmetrical■It is found that the factors of Loschmidt echo equal 1 for some k corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyingε_(k)·ε_(-k)<0,when the quench is from the gapless phase.By considering the quench from different ground states,we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase,and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase.This is different from the DQPTs in the case of quench from the gapped phase to gapped phase,in which the DQPTs will always appear.Moreover,we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase.The conclusion can also be extended to the general quantum spin chains.展开更多
We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated ...We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau sto-chastic differential equation, including an oscillating modu-lation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the rele-vant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the sto-chastic resonance in trend, in the kinetic ISS, and the reen-trant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation λ between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. Here a brief discussion is given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
文摘用新建立的非线性动力学模型研究了DNA的非线性特性及它的复制与遗传 ,转录和转译等生物功能。这个新的模型强调了碱基氢键中的氢原子的独特作用 ,使用了三个动力学变量来描述氢原子在双Morse势中的振动及碱基的振动与转动 ,并充分考虑了三个运动模之间的耦合效应。应用这模型得到了复制与转录的特性 ,说明了DNA的分型特征及D DNA A DNA以及B DNA Z
文摘In this paper we study the traffic states and jams in vehicular traffic merging and bifurcating at a junction on a two-lane highway. The two-lane traffic model for the vehicular motion at the junction is presented where a jam occurs frequently due to merging, lane changing, and bifurcating. The traffic flow is called the weaving. At the weaving section, vehicles slow down and then move aside on the other lane for changing their direction. We derive the fundamental diagrams (flow-density diagrams) for the weaving traffic flow. The traffic states vary with the density, slowdown speed, and the fraction of vehicles changing the lane. The dynamical phase transitions occur. It is shown that the fundamental diagrams depend highly on the traffic states.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11104217 and 11402199), the Science Plan Foundation office of the Education Department of Shaanxi Province (Grant No. 14JK1676), and the Natural Science Foundation of Shaanxi Province (Grant No. 14JQ1022).
文摘We investigate dynamical phase transitions that are induced by interspecies interaction in a two-species bosonic Josephson junctions (B J J), based on semi-classical theory. In zero-phase mode, similar to the case of a single-species B J J, we observe the well-known dynamical phase transition from Josephson oscillation to self-trapping, which can be induced by both enhanced repulsive and attractive interspecies interactions. In π phase mode, dynamical phase transitions are even more interesting and counter- intuitive. We characterize a dynamical phase transition with the merging of two separate phase space domains into one, which is induced by increasing repulsive interspecies interaction. On the other hand, we find that by increasing attractive interspecies interaction, a phase separation of two formally overlapped phase space domains will occur. At last, we reveal that these intriguing dynamical phase transitions are caused by different kinds of bifurcations.
基金supported by the National Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σz for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω) ∝ ω~s is found to be universal and independent of the bias ε and the coupling strength α(except at the quantum critical point α = αc and ε = 0). Our NRG data also show C(ω) ∝ χ~2ω~s for a wide range of parameters, including the biased strong coupling regime(ε = 0 and α 〉 αc), supporting the general validity of the Shiba relation. Close to the quantum critical point αc,the dependence of C(ω) on α and ε is understood in terms of the competition between ε and the crossover energy scale ω0^*of the unbiased case. C(ω) is stable with respect to ε for ε《ε^*. For ε 》ε^*, it is suppressed by ε in the low frequency regime. We establish that ε^*∝(ω0^*)^1/θ holds for all sub-Ohmic regime 0≤s 〈 1, with θ = 2/(3s) for 0 〈 s≤1/2 and θ = 2/(1 + s) for 1/2 〈 s 〈 1. The variation of C(ω) with α and ε is summarized into a crossover phase diagram on the α–ε plane.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No 031554).
文摘The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.
文摘The time evolution of the Hamming distance (damage spreading) for the and Ising models on the square lattice is performed with a special metropolis dynamics algorithm. Two distinct regimes are observed according to the temperature range for both models: a low-temperature one where the distance in the long-time limit is finite and seems not to depend on the initial distance and the system size; a high-temperature one where the distance vanishes in the long-time limit. Using the finite size scaling method, the dynamical phase transition (damage spreading transition) temperature is obtained as for the Ising model.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975126 and 11575087)。
文摘We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form■where the quasiparticle excitation spectraεkmay be smaller than 0 for some k and are asymmetrical■It is found that the factors of Loschmidt echo equal 1 for some k corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyingε_(k)·ε_(-k)<0,when the quench is from the gapless phase.By considering the quench from different ground states,we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase,and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase.This is different from the DQPTs in the case of quench from the gapped phase to gapped phase,in which the DQPTs will always appear.Moreover,we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase.The conclusion can also be extended to the general quantum spin chains.
基金supported by the National Natural Science Foundation of China(Grant No.60471023)the Natural Science Foundation of Guangdong Province(Grant No.031544)
文摘We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau sto-chastic differential equation, including an oscillating modu-lation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the rele-vant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the sto-chastic resonance in trend, in the kinetic ISS, and the reen-trant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation λ between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. Here a brief discussion is given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises.