【目的】探讨pH对猪肉肌原纤维蛋白热诱导凝胶保水性及水的移动性影响。【方法】从猪肉中提取肌原纤维蛋白,用低场NMR(nuclear magnetic resonance)研究pH对肌原纤维蛋白热诱导凝胶中水的T2弛豫性质的影响。同时用离心法测量pH对肌原纤...【目的】探讨pH对猪肉肌原纤维蛋白热诱导凝胶保水性及水的移动性影响。【方法】从猪肉中提取肌原纤维蛋白,用低场NMR(nuclear magnetic resonance)研究pH对肌原纤维蛋白热诱导凝胶中水的T2弛豫性质的影响。同时用离心法测量pH对肌原纤维蛋白凝胶保水性(water holding capacity,WHC)影响。【结果】NMR结果拟合后得到水有4个组分,合并为对应水的3种状态即不可移动水、可移动水和自由水。随着pH升高,pH偏离肌原纤维蛋白的等电点(pI),代表可移动水的T2弛豫时间显著增加,其所占峰的面积和凝胶的WHC也随之增加。主成分分析结果发现,处于等电点附近的样品在样品评分图上与其它pH样品显著不同。【结论】凝胶保水性的增加主要是可移动水的增加,凝胶WHC增加的原因可能是肌原纤维凝胶后孔径增加,从而可以容纳更多的水。展开更多
Convex optimization is a class of mathematical programming problems with polynomial complexity for which state-of-the-art, highly efficient numerical algorithms with predeterminable computational bounds exist. Computa...Convex optimization is a class of mathematical programming problems with polynomial complexity for which state-of-the-art, highly efficient numerical algorithms with predeterminable computational bounds exist. Computational efficiency and tractability in aerospace engineering, especially in guidance, navigation, and control (GN&C), are of paramount importance. With theoretical guarantees on solutions and computational efficiency, convex optimization lends itself as a very appealing tool. Coinciding the strong drive toward autonomous operations of aerospace vehicles, convex optimization has seen rapidly increasing utility in solving aerospace GN&C problems with the potential for onboard real-time applications. This paper attempts to provide an overview on the problems to date in aerospace guidance, path planning, and control where convex optimization has been applied. Various convexification techniques are reviewed that have been used to convexify the originally nonconvex aerospace problems. Discussions on how to ensure the validity of the convexification process are provided. Some related implementation issues will be introduced as well.展开更多
Objective: To examine the effects of autogenic training and abdominal breathing on heart rate and finger temperature. Methods: Forty-five healthy female university students were randomly assigned to three groups:cont...Objective: To examine the effects of autogenic training and abdominal breathing on heart rate and finger temperature. Methods: Forty-five healthy female university students were randomly assigned to three groups:control、autogenic training and deep abdominal breathing groups, and their physiological effects were compared. Results:The result of this experiment showed that both autogenic training and abdominal breathing increased finger temperature significantly, however, the increase magnitude didn’t show significant differences in two groups.During autogenic training, the heart rate of autogenic training group declined significantly,the heart rate of deep abdominal breathing group decreased significantly after deep abdominal breathing. The decrease magnitude between the three groups showed no significant differences. Conclusion: Both the present techniques can decrease heart rate and increase finger temperature.展开更多
文摘【目的】探讨pH对猪肉肌原纤维蛋白热诱导凝胶保水性及水的移动性影响。【方法】从猪肉中提取肌原纤维蛋白,用低场NMR(nuclear magnetic resonance)研究pH对肌原纤维蛋白热诱导凝胶中水的T2弛豫性质的影响。同时用离心法测量pH对肌原纤维蛋白凝胶保水性(water holding capacity,WHC)影响。【结果】NMR结果拟合后得到水有4个组分,合并为对应水的3种状态即不可移动水、可移动水和自由水。随着pH升高,pH偏离肌原纤维蛋白的等电点(pI),代表可移动水的T2弛豫时间显著增加,其所占峰的面积和凝胶的WHC也随之增加。主成分分析结果发现,处于等电点附近的样品在样品评分图上与其它pH样品显著不同。【结论】凝胶保水性的增加主要是可移动水的增加,凝胶WHC增加的原因可能是肌原纤维凝胶后孔径增加,从而可以容纳更多的水。
基金the National Natural Science Foundation of China(Grant No.61603017).
文摘Convex optimization is a class of mathematical programming problems with polynomial complexity for which state-of-the-art, highly efficient numerical algorithms with predeterminable computational bounds exist. Computational efficiency and tractability in aerospace engineering, especially in guidance, navigation, and control (GN&C), are of paramount importance. With theoretical guarantees on solutions and computational efficiency, convex optimization lends itself as a very appealing tool. Coinciding the strong drive toward autonomous operations of aerospace vehicles, convex optimization has seen rapidly increasing utility in solving aerospace GN&C problems with the potential for onboard real-time applications. This paper attempts to provide an overview on the problems to date in aerospace guidance, path planning, and control where convex optimization has been applied. Various convexification techniques are reviewed that have been used to convexify the originally nonconvex aerospace problems. Discussions on how to ensure the validity of the convexification process are provided. Some related implementation issues will be introduced as well.
文摘Objective: To examine the effects of autogenic training and abdominal breathing on heart rate and finger temperature. Methods: Forty-five healthy female university students were randomly assigned to three groups:control、autogenic training and deep abdominal breathing groups, and their physiological effects were compared. Results:The result of this experiment showed that both autogenic training and abdominal breathing increased finger temperature significantly, however, the increase magnitude didn’t show significant differences in two groups.During autogenic training, the heart rate of autogenic training group declined significantly,the heart rate of deep abdominal breathing group decreased significantly after deep abdominal breathing. The decrease magnitude between the three groups showed no significant differences. Conclusion: Both the present techniques can decrease heart rate and increase finger temperature.