In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima...In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.展开更多
基金Science and Technology Plan Project of Lanzhou City(No.2014-2-7)
文摘In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.