A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic...A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM). The resulting copolymers displayed good solubility in common organic solvents. Flexible, transparent, tough membranes were obtained via solution casting. All the films showed high thermal stability with desulfonation temperature over 300℃. They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa. High proton conductivity (0.23 S/cm at 100% RH) was also observed. More importantly, the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability, which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.展开更多
TiO2thin films with 0.2 wt%, 0.4 wt%, 0.6wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol–gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorpt...TiO2thin films with 0.2 wt%, 0.4 wt%, 0.6wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol–gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction(XRD) patterns for doped films at 0.2 wt% and0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2exhibits(101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nanostructured highly porous shell morphology.展开更多
In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution...In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.展开更多
A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system,...A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.展开更多
In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamp...In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The microgap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of predicting the size dependence behaviors of the micro-beam,and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the resonator have also been investigated.展开更多
Antiferromagnetic (AFM) materials have attracted wide attention in spin-orbit torque (SOT)-based spintronic due to its abundant spin-dependent properties and unique advantage of immunity against external field perturb...Antiferromagnetic (AFM) materials have attracted wide attention in spin-orbit torque (SOT)-based spintronic due to its abundant spin-dependent properties and unique advantage of immunity against external field perturbations.To act as the charge-to-spin conversion source in energy-saving spintronic devices,it is of great importance for the AFM material to possess a large spin torque efficiency(ξDL).In this work,using the spin torque ferromagnetic resonance (ST-FMR) technique and a Mn2Au/Ni Fe(Py) bilayer system,we systemically study the ξDLof AFM Mn2Au films with different crystal structures.Compared with polycrystalline Mn2Au with effective ξDL<0.051,we show a much larger ξDLof~0.333 in single-crystal Mn2Au,which arises from the large spin Hall conductivity instead of electrical resistivity.Moreover,with a further contribution of interfacial effects,the effective ξDLof single-crystalline Mn2Au/Py system increases to 0.731,which is more than two times larger than the value of ~0.22 reported for the Mn2Au/CoFeB system.By utilizing the largeξDLof Mn2Au in a perpendicularly magnetized Mn Ga/Mn2Au system,energy-efficient deterministic magnetization switching with a current density at ~10^(6)A cm^(-2)is achieved.Our results reveal a significant potential of Mn2Au as an efficient SOT source and shed light on its application in future AFM material-based SOT integration technology.展开更多
This research presents the influence of copper(Cu) concentration on the properties of copper zinc tin sulfide(CZTS) nanoparticles(NPs) synthesized by a colloidal method, employing oleylamine as an organic solvent. Fro...This research presents the influence of copper(Cu) concentration on the properties of copper zinc tin sulfide(CZTS) nanoparticles(NPs) synthesized by a colloidal method, employing oleylamine as an organic solvent. From the structural analysis, a pure phase of CZTS was obtained at an optimized molar ratio of 1.8:1.1:1:4,and secondary phases were observed as the Cu concentration increased. The increment of the NPs size from 15 to50 nm was noticed as a function of Cu concentration.Importantly, the optical bandgap energy was tuned from1.35 to 1.68 eV with respect to Cu concentration. The sample synthesized at the molar ratio of 1.8:1.1:1:4 showed a pure phase CZTS with desired elemental composition and bandgap. Furthermore, CZTS thin films were prepared by a doctor-blade method using synthesized NPs followed by annealing under a sulfur/nitrogen atmosphere. The annealed CZTS film showed a significant improvement in the morphological, electrical and optoelectronic properties.Thus, the annealed CZTS film can be efficiently used as an absorber layer in low-cost thin film solar cells.展开更多
High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate dista...High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.展开更多
基金financially supported by the Department of Science and Technology of Jilin Province(No.20086019)the 863 Project from the Ministry of Science and Technology of China(No.2006AA03Z224)
文摘A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM). The resulting copolymers displayed good solubility in common organic solvents. Flexible, transparent, tough membranes were obtained via solution casting. All the films showed high thermal stability with desulfonation temperature over 300℃. They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa. High proton conductivity (0.23 S/cm at 100% RH) was also observed. More importantly, the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability, which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.
文摘TiO2thin films with 0.2 wt%, 0.4 wt%, 0.6wt%, and 0.8 wt% Fe were prepared on glass and silicon substrates using sol–gel spin coating technique. The optical cut-off points are increasingly red-shifted and the absorption edge is shifted over the higher wavelength region with Fe content increasing. As Fe content increases, the optical band gap decreases from 3.03 to 2.48 eV whereas the tail width increases from 0.26 to 1.43 eV. The X-ray diffraction(XRD) patterns for doped films at 0.2 wt% and0.8 wt% Fe reveal no characteristic peaks, indicating that the film is amorphous whereas undoped TiO2exhibits(101) orientation with anatase phase. Thin films of higher Fe content exhibit a homogeneous, uniform, and nanostructured highly porous shell morphology.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1I1A3054824)supported by the Basic Research Program through the NRF funded by the MSIT(Ministry of Science and ICT,2021R1A4A1032762)+2 种基金financial support by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(no.20213030010400)the financial support by the NRF grant funded by the MSIT under the contract numbers 2022R1C1C1011975。
文摘In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.
基金financially supported by the National Science and Technology Major Project (No. 2009ZX02037-003)the China Postdoctoral Science Foundation (No. 2011M500996)
文摘A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.
文摘In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The microgap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of predicting the size dependence behaviors of the micro-beam,and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the resonator have also been investigated.
基金supported by the Agency for Science,Technology and Research (A*STAR) of Singapore (A1983c0036)the Singapore Ministry of Education (MOE2018-T2-2043)A*STAR IAF-ICP 11801E0036。
文摘Antiferromagnetic (AFM) materials have attracted wide attention in spin-orbit torque (SOT)-based spintronic due to its abundant spin-dependent properties and unique advantage of immunity against external field perturbations.To act as the charge-to-spin conversion source in energy-saving spintronic devices,it is of great importance for the AFM material to possess a large spin torque efficiency(ξDL).In this work,using the spin torque ferromagnetic resonance (ST-FMR) technique and a Mn2Au/Ni Fe(Py) bilayer system,we systemically study the ξDLof AFM Mn2Au films with different crystal structures.Compared with polycrystalline Mn2Au with effective ξDL<0.051,we show a much larger ξDLof~0.333 in single-crystal Mn2Au,which arises from the large spin Hall conductivity instead of electrical resistivity.Moreover,with a further contribution of interfacial effects,the effective ξDLof single-crystalline Mn2Au/Py system increases to 0.731,which is more than two times larger than the value of ~0.22 reported for the Mn2Au/CoFeB system.By utilizing the largeξDLof Mn2Au in a perpendicularly magnetized Mn Ga/Mn2Au system,energy-efficient deterministic magnetization switching with a current density at ~10^(6)A cm^(-2)is achieved.Our results reveal a significant potential of Mn2Au as an efficient SOT source and shed light on its application in future AFM material-based SOT integration technology.
基金financially supported by the Mexican Center of Innovation in Solar Energy-CeMIE-Sol(No.P-55)。
文摘This research presents the influence of copper(Cu) concentration on the properties of copper zinc tin sulfide(CZTS) nanoparticles(NPs) synthesized by a colloidal method, employing oleylamine as an organic solvent. From the structural analysis, a pure phase of CZTS was obtained at an optimized molar ratio of 1.8:1.1:1:4,and secondary phases were observed as the Cu concentration increased. The increment of the NPs size from 15 to50 nm was noticed as a function of Cu concentration.Importantly, the optical bandgap energy was tuned from1.35 to 1.68 eV with respect to Cu concentration. The sample synthesized at the molar ratio of 1.8:1.1:1:4 showed a pure phase CZTS with desired elemental composition and bandgap. Furthermore, CZTS thin films were prepared by a doctor-blade method using synthesized NPs followed by annealing under a sulfur/nitrogen atmosphere. The annealed CZTS film showed a significant improvement in the morphological, electrical and optoelectronic properties.Thus, the annealed CZTS film can be efficiently used as an absorber layer in low-cost thin film solar cells.
基金financially supported by the National Natural Science Foundation of China (Nos. 51175118 and U1330110)the Open Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (No. SPC201104)
文摘High power pulsed magnetron sputtering(HPPMS), a novel physical vapor deposition technology, was applied to prepare vanadium films on aluminum alloy substrate in this paper. The influence of target–substrate distance(Dt–s)(ranging from 8 to 20 cm) on phase structure, surface morphology, deposition rate, and corrosion resistance of vanadium films was investigated. The results show that the vanadium films are textured with a preferential orientation in the(111) direction except for that fabricated at 20 cm. With Dt–sincreasing, the intensity of(111) diffraction peak of the films decreases and there exists a proper distance leading to the minimum surface roughness of 0.65 nm. The deposition rate decreases with Dt–sincreasing. All the V-coated aluminum samples possess better corrosion resistance than the control sample. The sample fabricated at Dt–sof 12 cm demonstrates the best corrosion resistance with the corrosion potential increasing by 0.19 V and the corrosion current decreasing by an order of magnitude compared with that of the substrate. The samples gain further improvement in corrosion resistance after annealing, and if compared with that of annealed aluminum alloy, then the corrosion potential of the sample fabricated at 20 cm increases by 0.415 V and the corrosion current decreases by two orders of magnitude after annealed at 200 °C. If the annealing temperature further rises to 300 °C, then the corrosion resistance of samples increases less obviously than that of the control sample.