为了对不均匀介质中物理场进行更有效的多尺度模拟,提出一种称为有限点集-网格元法的数值方法(finite point-grid element method,FPGEM).FPGEM是对传统有限元方法的改造,它把网格与节点分离成独立的两套覆盖,采用离散的有限点集对物理...为了对不均匀介质中物理场进行更有效的多尺度模拟,提出一种称为有限点集-网格元法的数值方法(finite point-grid element method,FPGEM).FPGEM是对传统有限元方法的改造,它把网格与节点分离成独立的两套覆盖,采用离散的有限点集对物理场进行多尺度逼近,同时采用网格剖分作为介质分布的几何载体;点集和网格各自扮演不同的角色,发挥不同的功能.FPGEM主要的优点是:由于其节点和网格分离,对场的非均匀性及介质非均匀分布具有双重的多尺度模拟的优势,为一些地球物理问题中的多尺度模拟提供了一种更加灵活、自然的计算框架.展开更多
针对有限元方法不能有效模拟喷丸加工过程中大量弹丸反复冲击的现状,使用光滑粒子流体动力学法(smoothed particle hydrodynamics,SPH)耦合有限元法(finite element method,FEM)模拟喷丸强化过程。工件采用FEM建模,弹丸采用SPH建模,通...针对有限元方法不能有效模拟喷丸加工过程中大量弹丸反复冲击的现状,使用光滑粒子流体动力学法(smoothed particle hydrodynamics,SPH)耦合有限元法(finite element method,FEM)模拟喷丸强化过程。工件采用FEM建模,弹丸采用SPH建模,通过接触算法实现SPH和FEM的耦合以模拟弹丸对工件的强化作用。提出弹丸流的材料模型,分析了相关参数对工件残余压应力分布和能量利用率的影响。结果表明,随着弹丸打击次数的增加,工件表面残余压应力分布逐渐趋于稳定;高覆盖率能有效改善工件表面残余压应力分布,低覆盖率则会降低喷丸效果;适当提高弹丸速度虽然可以使残余应力层深度和最大残余压应力值增加,但会降低能量利用率。通过与相关实验数据的比较,验证了仿真模型和结果的正确性。展开更多
文摘为了对不均匀介质中物理场进行更有效的多尺度模拟,提出一种称为有限点集-网格元法的数值方法(finite point-grid element method,FPGEM).FPGEM是对传统有限元方法的改造,它把网格与节点分离成独立的两套覆盖,采用离散的有限点集对物理场进行多尺度逼近,同时采用网格剖分作为介质分布的几何载体;点集和网格各自扮演不同的角色,发挥不同的功能.FPGEM主要的优点是:由于其节点和网格分离,对场的非均匀性及介质非均匀分布具有双重的多尺度模拟的优势,为一些地球物理问题中的多尺度模拟提供了一种更加灵活、自然的计算框架.
文摘针对有限元方法不能有效模拟喷丸加工过程中大量弹丸反复冲击的现状,使用光滑粒子流体动力学法(smoothed particle hydrodynamics,SPH)耦合有限元法(finite element method,FEM)模拟喷丸强化过程。工件采用FEM建模,弹丸采用SPH建模,通过接触算法实现SPH和FEM的耦合以模拟弹丸对工件的强化作用。提出弹丸流的材料模型,分析了相关参数对工件残余压应力分布和能量利用率的影响。结果表明,随着弹丸打击次数的增加,工件表面残余压应力分布逐渐趋于稳定;高覆盖率能有效改善工件表面残余压应力分布,低覆盖率则会降低喷丸效果;适当提高弹丸速度虽然可以使残余应力层深度和最大残余压应力值增加,但会降低能量利用率。通过与相关实验数据的比较,验证了仿真模型和结果的正确性。