加速鲁棒特征算法(speed up robust features,SURF)的时间复杂度大,传统串行计算的方法,实时性难以保证.针对上述问题,提出一种基于OpenCL架构的SURF并行实现方法.首先对算法中的积分图的计算、Hessian响应图、特征点主方向、特征点描...加速鲁棒特征算法(speed up robust features,SURF)的时间复杂度大,传统串行计算的方法,实时性难以保证.针对上述问题,提出一种基于OpenCL架构的SURF并行实现方法.首先对算法中的积分图的计算、Hessian响应图、特征点主方向、特征点描述等步骤实施数据并行和任务并行处理,并给出详细的算法流程.接着从OpenCL架构的数据传输、内存访问以及负载均衡等方面优化算法性能.实验结果表明,该算法对不同分辨率的图片均实现了10倍以上的加速比,一些高分辨率的图片甚至可以达到39.5倍,并且算法适用于多种通用计算平台.展开更多
文摘加速鲁棒特征算法(speed up robust features,SURF)的时间复杂度大,传统串行计算的方法,实时性难以保证.针对上述问题,提出一种基于OpenCL架构的SURF并行实现方法.首先对算法中的积分图的计算、Hessian响应图、特征点主方向、特征点描述等步骤实施数据并行和任务并行处理,并给出详细的算法流程.接着从OpenCL架构的数据传输、内存访问以及负载均衡等方面优化算法性能.实验结果表明,该算法对不同分辨率的图片均实现了10倍以上的加速比,一些高分辨率的图片甚至可以达到39.5倍,并且算法适用于多种通用计算平台.