城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而PO...城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而POI空间分布特征与区域功能密切相关。本文利用空间共位模式挖掘方法挖掘POI潜在上下文关系,提取POI空间分布信息,构建区域特征向量,并进行区域聚类;再利用POI类别比例、居民的出行特征等对聚类结果进行识别。以北京市核心城市功能区为例,将研究结果与北京市百度地图、居民出行特征进行对比验证分析。试验表明,本文方法能识别出具有明显特征的城市功能区,如成熟的娱乐商业区、科教文化区、居住区等。同时,与基于POI语义信息的LDA方法及顾及POI线性空间关系的Word2Vec方法进行对比分析,证明了本文方法的优越性。展开更多
针对复杂居民地多边形的信息挖掘问题,提出了一种多级图划分聚类分析方法,构造居民地多边形的图模型,并通过对图模型进行粗化匹配与重构、初始化分和细化得到聚类结果。首先构建研究区域内居民地建筑物的Delaunay三角网,生成包含研究对...针对复杂居民地多边形的信息挖掘问题,提出了一种多级图划分聚类分析方法,构造居民地多边形的图模型,并通过对图模型进行粗化匹配与重构、初始化分和细化得到聚类结果。首先构建研究区域内居民地建筑物的Delaunay三角网,生成包含研究对象之间的邻接信息图;然后结合空间认知准则和人类认知的特点,采用形状狭长度、面积比、凹凸性、距离和连通性5个指标度量邻接图的相似性;最后应用多级图划分方法,得到聚类结果。采用中国上海地区的居民地建筑物矢量数据进行聚类分析实验,并对比了改进的k均值算法(k-Means++)、具有噪声鲁棒性的基于密度的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)和最小生成树(minimum spanning tree, MST)聚类算法得到的轮廓系数以及视觉效果。实验结果表明,基于多级图划分的居民地多边形聚类分析的结果更加符合人类认知。展开更多
随着大数据与人工智能时代的到来,发展智能教育,应对新技术浪潮,培养新时代所需的专业人才已成为高校的重要任务。以中国地质大学(武汉)地理空间信息工程(geospatial information engineering,GIE)专业为例,结合专业特色和优势,基于新...随着大数据与人工智能时代的到来,发展智能教育,应对新技术浪潮,培养新时代所需的专业人才已成为高校的重要任务。以中国地质大学(武汉)地理空间信息工程(geospatial information engineering,GIE)专业为例,结合专业特色和优势,基于新时代教育的新理念、新机构、新模式探索了GIE专业人才培养模式。围绕创新的“三融合”人才培养理念,开展了跨学科教学平台、专业课程结构、新型教学模式3个方面的人才培养体系设计探索。实践表明,该模式取得了显著的成果,对同类院校设置培养方案具有一定参考意义。展开更多
文摘城市功能结构的探索对人们理解城市及城市规划有着重要的作用。兴趣点(point of interest,POI)数据作为城市设施的代表,被广泛应用于城市功能区提取。以往对城市功能区研究大多只考虑了POI统计信息,忽略了POI中丰富的空间分布信息,而POI空间分布特征与区域功能密切相关。本文利用空间共位模式挖掘方法挖掘POI潜在上下文关系,提取POI空间分布信息,构建区域特征向量,并进行区域聚类;再利用POI类别比例、居民的出行特征等对聚类结果进行识别。以北京市核心城市功能区为例,将研究结果与北京市百度地图、居民出行特征进行对比验证分析。试验表明,本文方法能识别出具有明显特征的城市功能区,如成熟的娱乐商业区、科教文化区、居住区等。同时,与基于POI语义信息的LDA方法及顾及POI线性空间关系的Word2Vec方法进行对比分析,证明了本文方法的优越性。
文摘针对复杂居民地多边形的信息挖掘问题,提出了一种多级图划分聚类分析方法,构造居民地多边形的图模型,并通过对图模型进行粗化匹配与重构、初始化分和细化得到聚类结果。首先构建研究区域内居民地建筑物的Delaunay三角网,生成包含研究对象之间的邻接信息图;然后结合空间认知准则和人类认知的特点,采用形状狭长度、面积比、凹凸性、距离和连通性5个指标度量邻接图的相似性;最后应用多级图划分方法,得到聚类结果。采用中国上海地区的居民地建筑物矢量数据进行聚类分析实验,并对比了改进的k均值算法(k-Means++)、具有噪声鲁棒性的基于密度的空间聚类算法(density-based spatial clustering of applications with noise,DBSCAN)和最小生成树(minimum spanning tree, MST)聚类算法得到的轮廓系数以及视觉效果。实验结果表明,基于多级图划分的居民地多边形聚类分析的结果更加符合人类认知。
文摘随着大数据与人工智能时代的到来,发展智能教育,应对新技术浪潮,培养新时代所需的专业人才已成为高校的重要任务。以中国地质大学(武汉)地理空间信息工程(geospatial information engineering,GIE)专业为例,结合专业特色和优势,基于新时代教育的新理念、新机构、新模式探索了GIE专业人才培养模式。围绕创新的“三融合”人才培养理念,开展了跨学科教学平台、专业课程结构、新型教学模式3个方面的人才培养体系设计探索。实践表明,该模式取得了显著的成果,对同类院校设置培养方案具有一定参考意义。