This paper deals with the boundary value problems for regular function with valuesin a Clifford algebra: ()W=O, x∈R<sup>n</sup>\Г, w<sup>+</sup>(x)=G(x)W<sup>-</sup>(x)+λ...This paper deals with the boundary value problems for regular function with valuesin a Clifford algebra: ()W=O, x∈R<sup>n</sup>\Г, w<sup>+</sup>(x)=G(x)W<sup>-</sup>(x)+λf(x, W<sup>+</sup>(x), W<sup>-</sup>(x)), x∈Г; W<sup>-</sup>(∞)=0,where Г is a Liapunov surface in R<sup>n</sup> the differential operator ()=()/()x<sub>1</sub>+()/()x<sub>2</sub>+…+()/()x<sub>n</sub>e<sub>n</sub>, W(x) =∑<sub>A</sub>, ()<sub>A</sub>W<sub>A</sub>(x) are unknown functions with values in a Clifford algebra ()<sub>n</sub> Undersome hypotheses, it is proved that the linear baundary value problem (where λf(x, W<sup>+</sup>(x),W<sup>-</sup>(x)) =g(x)) has a unique solution and the nonlinear boundary value problem has atleast one solution.展开更多
A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensiona...A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr...A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.展开更多
In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical mechanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statisti...In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical mechanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics? 2): Is the ergodic hypothesis related to equilibrium statistical mechanics? Note that these problems are not yet answered, since there are several opinions for the formulation of equilibrium statistical mechanics. In order to answer the above questions, we first introduce measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. And we propose the measurement theoretical foundation of equili-brium statistical mechanics, and further, answer the above 1) and 2), that is, 1) is “No”, but, 2) is “Yes”.展开更多
A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu p...A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.展开更多
With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the perfor...With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the performance of multivariate calibrations.Similar to integral order Savitzky–Golay differentiation(IOSGD),FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients.Three NIR datasets including diesel,wheat and corn datasets were utilized to test this method.The results showed that FOSGD,which is easy to compute,is a general method to obtain Savitzky–Golay smoothing,fractional order and integral order differentiations.Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones,especially for physical properties of interest,such as density,cetane number and hardness.展开更多
We prove uniform positivity of the Lyapunov exponent for quasiperiodic SchrSdinger cocycles with C2 cos-type potentials, large coupling constants, and fixed weak Liouville frequencies.
Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagra...Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.展开更多
Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solut...Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.展开更多
In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y...In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α)(λ2uq1(y) + μ2vq2(y) + β2uq3(y)vq4(y) dy,where Rn + = {x =(x1,x2,...,xn) ∈ Rn|xn〉 0}, =(x1,x2,...,xn-1,-xn) is the reflection of the point x about the hyperplane xn= 0,0 〈 α 〈 n,λi,μi,βi≥ 0(i = 1,2) are constants,pi≥ 0 and qi≥ 0(i = 1,2,3,4).We prove the nonexistence of positive solutions to the above system with critical and subcritical exponents via moving sphere method.展开更多
We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We p...We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We prove that, for suitable initial data, the scheme is stable in the l^1-norm under a hyperbolic CFL condition which is in consistent with the l^1-convergence results established in [Wen and Jin, SIAM J. Numer. Anal., 46 (2008), 2688-2714] for the same scheme. The stability constant is shown to be independent of the computational time. We also provide a counter example to show that for other initial data, in particular, the measure-valued initial data, the numerical solution may become l^1-unstable.展开更多
In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the tempo...In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the temporal parts of the translated Lax pairs and its adjoint Lax pairs of the Levi equations are all constrainted as finite dimensional Liouville integrable Hamiltonian systems. Finally,the involutive solutions of the Levi equations are presented.展开更多
One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equatio...One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.展开更多
A Liouville type result is established for non-negative entire solutions of a weighted elliptic equation.This provides a positive answer to a problem left open by Du and Guo(2015) and Phan and Souplet(2012)(see(CJ) by...A Liouville type result is established for non-negative entire solutions of a weighted elliptic equation.This provides a positive answer to a problem left open by Du and Guo(2015) and Phan and Souplet(2012)(see(CJ) by Du and Guo(2015) and Conjecture B by Phan and Souplet(2012)). Meanwhile, some regularity results are also obtained. The main results in this paper imply that the number ps is the critical value of the Dirichlet problems of the related equation, even though there are still some open problems left. Our results also apply for the equation with a Hardy potential.展开更多
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of St...In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.展开更多
Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider...Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider the non-linear elliptic equation △μ,pu=-λμ,p|u|^p-2ufor p ∈ (1, 2). We derive a sharp gradient estimate for positive smooth solutions of this equation. As applications, we get a Harnack inequality and a Liouville type theorem..展开更多
In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space(X, dX)with curvature bounded above by a constant κ(κ 0) in the sense of Alexandrov. As a direct application,it gives some Lio...In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space(X, dX)with curvature bounded above by a constant κ(κ 0) in the sense of Alexandrov. As a direct application,it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng(1980) and Choi(1982) to harmonic maps into singular spaces.展开更多
We show that any smooth solution(u, H) to the stationary equations of magnetohydrodynamics belonging to both spaces L^6(R^3) and BMO^(-1)(R^3) must be identically zero.This is an extension of previous results, all of ...We show that any smooth solution(u, H) to the stationary equations of magnetohydrodynamics belonging to both spaces L^6(R^3) and BMO^(-1)(R^3) must be identically zero.This is an extension of previous results, all of which systematically required stronger integrability and the additional assumption ▽u, ▽H∈L^2(R^3), i.e., finite Dirichlet integral.展开更多
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fraction...In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.展开更多
文摘This paper deals with the boundary value problems for regular function with valuesin a Clifford algebra: ()W=O, x∈R<sup>n</sup>\Г, w<sup>+</sup>(x)=G(x)W<sup>-</sup>(x)+λf(x, W<sup>+</sup>(x), W<sup>-</sup>(x)), x∈Г; W<sup>-</sup>(∞)=0,where Г is a Liapunov surface in R<sup>n</sup> the differential operator ()=()/()x<sub>1</sub>+()/()x<sub>2</sub>+…+()/()x<sub>n</sub>e<sub>n</sub>, W(x) =∑<sub>A</sub>, ()<sub>A</sub>W<sub>A</sub>(x) are unknown functions with values in a Clifford algebra ()<sub>n</sub> Undersome hypotheses, it is proved that the linear baundary value problem (where λf(x, W<sup>+</sup>(x),W<sup>-</sup>(x)) =g(x)) has a unique solution and the nonlinear boundary value problem has atleast one solution.
文摘A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
基金The project supported by the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China
文摘A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.
文摘In this paper, we study and answer the following fundamental problems concerning classical equilibrium statistical mechanics: 1): Is the principle of equal a priori probabilities indispensable for equilibrium statistical mechanics? 2): Is the ergodic hypothesis related to equilibrium statistical mechanics? Note that these problems are not yet answered, since there are several opinions for the formulation of equilibrium statistical mechanics. In order to answer the above questions, we first introduce measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. And we propose the measurement theoretical foundation of equili-brium statistical mechanics, and further, answer the above 1) and 2), that is, 1) is “No”, but, 2) is “Yes”.
文摘A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.
基金supported by Science and Technology Commission of Shanghai Municipality (No.14142201400)
文摘With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the performance of multivariate calibrations.Similar to integral order Savitzky–Golay differentiation(IOSGD),FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients.Three NIR datasets including diesel,wheat and corn datasets were utilized to test this method.The results showed that FOSGD,which is easy to compute,is a general method to obtain Savitzky–Golay smoothing,fractional order and integral order differentiations.Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones,especially for physical properties of interest,such as density,cetane number and hardness.
文摘We prove uniform positivity of the Lyapunov exponent for quasiperiodic SchrSdinger cocycles with C2 cos-type potentials, large coupling constants, and fixed weak Liouville frequencies.
基金supported by the National Natural Science Foundation of China (Nos.11272227,11572212)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(No.KYLX15_0405)
文摘Perturbation to symmetry and adiabatic invariants are studied for the fractional Lagrangian system and the fractional Birkhoffian system in the sense of Riemann-Liouville derivatives.Firstly,the fractional Euler-Lagrange equation,the fractional Birkhoff equations as well as the fractional conservation laws for the two systems are listed.Secondly,the definition of adiabatic invariant for fractional mechanical system is given,then perturbation to symmetry and adiabatic invariants are established for the fractional Lagrangian system and the fractional Birkhoffian system under the special and general infinitesimal transformations,respectively.Finally,two examples are devoted to illustrate the results.
基金supported by NSFC(Grant Nos.11171092 and 11571093)supported by NSFC(Grant No.11371117)
文摘Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.
基金Supported by National Natural Science Foundation of China(Grant Nos.11101319,11201081,11202035)the Foundation of Shaanxi Statistical Research Center(Grant No.13JD04)the Foundation of Xi’an University of Finance and Economics(Grant No.12XCK07)
文摘In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α)(λ2uq1(y) + μ2vq2(y) + β2uq3(y)vq4(y) dy,where Rn + = {x =(x1,x2,...,xn) ∈ Rn|xn〉 0}, =(x1,x2,...,xn-1,-xn) is the reflection of the point x about the hyperplane xn= 0,0 〈 α 〈 n,λi,μi,βi≥ 0(i = 1,2) are constants,pi≥ 0 and qi≥ 0(i = 1,2,3,4).We prove the nonexistence of positive solutions to the above system with critical and subcritical exponents via moving sphere method.
基金Innovation Project of the Chinese Academy of Sciences grants K5501312S1,K5502212F1,K7290312G7 and K7502712F7NSFC grant 10601062+1 种基金NSF grant DMS-0608720NSAF grant 10676017
文摘We study the l^1-stability of a Haxniltonian-preserving scheme, developed in [Jin and Wen, Comm. Math. Sci., 3 (2005), 285-315], for the Liouville equation with a discontinuous potential in one space dimension. We prove that, for suitable initial data, the scheme is stable in the l^1-norm under a hyperbolic CFL condition which is in consistent with the l^1-convergence results established in [Wen and Jin, SIAM J. Numer. Anal., 46 (2008), 2688-2714] for the same scheme. The stability constant is shown to be independent of the computational time. We also provide a counter example to show that for other initial data, in particular, the measure-valued initial data, the numerical solution may become l^1-unstable.
文摘In this paper,the translation of the Lax pairs of the Levi equations is pre- sented.Then a symmetry constraint for the Levi equations is given by means of binary nonlinearization method. The spatial part and the temporal parts of the translated Lax pairs and its adjoint Lax pairs of the Levi equations are all constrainted as finite dimensional Liouville integrable Hamiltonian systems. Finally,the involutive solutions of the Levi equations are presented.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474076 and 10375041
文摘One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.
基金supported by National Natural Science Foundation of China (Grant No. 11571093)
文摘A Liouville type result is established for non-negative entire solutions of a weighted elliptic equation.This provides a positive answer to a problem left open by Du and Guo(2015) and Phan and Souplet(2012)(see(CJ) by Du and Guo(2015) and Conjecture B by Phan and Souplet(2012)). Meanwhile, some regularity results are also obtained. The main results in this paper imply that the number ps is the critical value of the Dirichlet problems of the related equation, even though there are still some open problems left. Our results also apply for the equation with a Hardy potential.
文摘In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.
基金Supported by the National Natural Science Foundation of China (11171254, 11271209)
文摘Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider the non-linear elliptic equation △μ,pu=-λμ,p|u|^p-2ufor p ∈ (1, 2). We derive a sharp gradient estimate for positive smooth solutions of this equation. As applications, we get a Harnack inequality and a Liouville type theorem..
基金supported by National Natural Science Foundation of China (Grant No. 11521101)supported by National Natural Science Foundation of China (Grant No. 11571374)+1 种基金National Program for Support of Top-Notch Young Professionalssupported by the Academy of Finland
文摘In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space(X, dX)with curvature bounded above by a constant κ(κ 0) in the sense of Alexandrov. As a direct application,it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng(1980) and Choi(1982) to harmonic maps into singular spaces.
基金supported by the Engineering and Physical Sciences Research Council [EP/L015811/1]
文摘We show that any smooth solution(u, H) to the stationary equations of magnetohydrodynamics belonging to both spaces L^6(R^3) and BMO^(-1)(R^3) must be identically zero.This is an extension of previous results, all of which systematically required stronger integrability and the additional assumption ▽u, ▽H∈L^2(R^3), i.e., finite Dirichlet integral.
文摘In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.