The self-assembly monolayers (SAMs) of n-dodecyltriethoxysilane (DTES) and 1 H, 1 H, 2H, 2H-perflu- orodecyltriethoxysilane (PFDS) on the surface of the 430 stainless steel (430SS) were prepared and their corr...The self-assembly monolayers (SAMs) of n-dodecyltriethoxysilane (DTES) and 1 H, 1 H, 2H, 2H-perflu- orodecyltriethoxysilane (PFDS) on the surface of the 430 stainless steel (430SS) were prepared and their corrosion protection performance was investigated by potentiodynamic polarization, Fourier transform infrared spectroscopy (FTIR) -attenuated total reflection (ATR), static contact angle and atomic force microscopy (AFM). The results showed that the alkali pretreatment and the water added into the self-assembly solution could generate more hydrox- yls on the 430SS surface, and then enhanced the adsorption of the SAMs. A suitable temperature of the self-assem- bly solution is important for the formation of the SAMs. The silane SAMs were chemically adsorbed on the 430SS substrates by Fe-O-Si bonds. In all cases tested, PFDS has a better inhibition effect compared with DTES, and the difference in inhibition effect is most marked at the lowest concentration of 1 mmol/L.展开更多
An in-situ polymerization method was employed to synthesize the nanosilica/acrylic/epoxy (SAE) hybrid coating on AISI 430 stainless steel (430SS), as compared with a traditional blending method. Mi- crostructures of t...An in-situ polymerization method was employed to synthesize the nanosilica/acrylic/epoxy (SAE) hybrid coating on AISI 430 stainless steel (430SS), as compared with a traditional blending method. Mi- crostructures of the blending SAE hybrid coating (BC) and in-situ SAE hybrid coating (ISC) were characterized by transmission electron microscopy (TEM). Corrosion resistance of BC and ISC on 430SS was evaluated by the neutral salt spray test and potentiodynamic polarization technique. Failure mechanism of the BC on 430SS was suggested by the microstructures and corrosion behaviors. Serious aggregation of nanosilica particles in the BC impairs its structural uniformity and induces the flaws formation. These flaws in the BC initiates the failures of pitting, filiform corrosion and peeling which are accelerated by the O2 concentration cell and H+ self-catalysis in chlorine-containing moist environments. The ISC-coated 430SS shows a more advantageous corrosion resistance than that of the BC-coated. The ISC-coated 430SS can suffer the salt spray over 1000 h. Besides, it exhibits a high corrosion potential beyond 0.925 V and good passivation characteristics during the potentiodynamic polarization.展开更多
文摘The self-assembly monolayers (SAMs) of n-dodecyltriethoxysilane (DTES) and 1 H, 1 H, 2H, 2H-perflu- orodecyltriethoxysilane (PFDS) on the surface of the 430 stainless steel (430SS) were prepared and their corrosion protection performance was investigated by potentiodynamic polarization, Fourier transform infrared spectroscopy (FTIR) -attenuated total reflection (ATR), static contact angle and atomic force microscopy (AFM). The results showed that the alkali pretreatment and the water added into the self-assembly solution could generate more hydrox- yls on the 430SS surface, and then enhanced the adsorption of the SAMs. A suitable temperature of the self-assem- bly solution is important for the formation of the SAMs. The silane SAMs were chemically adsorbed on the 430SS substrates by Fe-O-Si bonds. In all cases tested, PFDS has a better inhibition effect compared with DTES, and the difference in inhibition effect is most marked at the lowest concentration of 1 mmol/L.
基金Supported by the National Basic Research Program of China ("973" Program) (Grant No. 2004CB619305) the National Natural Science Foundation of China (Grant No. 50571044)
文摘An in-situ polymerization method was employed to synthesize the nanosilica/acrylic/epoxy (SAE) hybrid coating on AISI 430 stainless steel (430SS), as compared with a traditional blending method. Mi- crostructures of the blending SAE hybrid coating (BC) and in-situ SAE hybrid coating (ISC) were characterized by transmission electron microscopy (TEM). Corrosion resistance of BC and ISC on 430SS was evaluated by the neutral salt spray test and potentiodynamic polarization technique. Failure mechanism of the BC on 430SS was suggested by the microstructures and corrosion behaviors. Serious aggregation of nanosilica particles in the BC impairs its structural uniformity and induces the flaws formation. These flaws in the BC initiates the failures of pitting, filiform corrosion and peeling which are accelerated by the O2 concentration cell and H+ self-catalysis in chlorine-containing moist environments. The ISC-coated 430SS shows a more advantageous corrosion resistance than that of the BC-coated. The ISC-coated 430SS can suffer the salt spray over 1000 h. Besides, it exhibits a high corrosion potential beyond 0.925 V and good passivation characteristics during the potentiodynamic polarization.