Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an effi...Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline--namely the Connectome Compu- tation System (CCS)-for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping andconnectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI- Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6-85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/ zuoxinian/CCS) and our laboratory's Web site (http://lfcd. psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.展开更多
基金partially supported by the National Basic Research Program (973) of China (2015CB351702)the National Natural Science Foundation of China (81220108014, 81471740, 81201153, 81171409, and 81270023)+4 种基金the Key Research Program (KSZD-EW-TZ-002)the Hundred Talents Program of the Chinese Academy of SciencesDr. Xiu-Xia Xing acknowledges the Beijing Higher Education Young Elite Teacher Project (No. YETP1593)Dr. Zhi Yang acknowledges the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03)the Outstanding Young Researcher Award from Institute of Psychology, Chinese Academy of Sciences (Y4CX062008)
文摘Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline--namely the Connectome Compu- tation System (CCS)-for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping andconnectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI- Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6-85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/ zuoxinian/CCS) and our laboratory's Web site (http://lfcd. psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.