为寻找高效邻苯二甲酸二(2-乙基己基)酯(DEHP)降解菌,采用富集培养法从城市污水处理厂活性污泥中分离筛选出一株DEHP降解菌并命名为ASW6D。通过扫描电镜、16S r RNA同源性序列分析,初步将菌株ASW6D鉴定为分枝杆菌属(Mycobacterium sp.)...为寻找高效邻苯二甲酸二(2-乙基己基)酯(DEHP)降解菌,采用富集培养法从城市污水处理厂活性污泥中分离筛选出一株DEHP降解菌并命名为ASW6D。通过扫描电镜、16S r RNA同源性序列分析,初步将菌株ASW6D鉴定为分枝杆菌属(Mycobacterium sp.)。菌株ASW6D可在较宽温度(20~40℃)和pH(5~10)范围下高效降解DEHP,其最适生长降解条件为30℃、pH 8.0,3 d内可将初始浓度为500 mg·L^(-1)的DEHP降解82.87%。进一步采用GC-MS分析DEHP降解的中间产物,推测出DEHP的生物代谢途径为先通过β-氧化缩短DEHP侧链,生成邻苯二甲酸二丁酯(DBP),再将DBP转化为邻苯二甲酸(PA)。将菌株ASW6D接种到DEHP污染的土壤,可将土壤中DEHP去除率提高58.67%,表明ASW6D在PAEs污染环境生物修复方面的应用具有一定的潜力。展开更多
在传统移相全桥变换器拓扑上加入由电容和电感组成的无源辅助网络,可以在宽输入电压和整个负载范围内实现原边开关管的零电压开关(zero voltage switching,ZVS)。通过精确的损耗计算,可以寻找降低损耗的方法,优化电路结构以进一步提高...在传统移相全桥变换器拓扑上加入由电容和电感组成的无源辅助网络,可以在宽输入电压和整个负载范围内实现原边开关管的零电压开关(zero voltage switching,ZVS)。通过精确的损耗计算,可以寻找降低损耗的方法,优化电路结构以进一步提高变换器的效率。针对加辅助网络的全桥变换器进行深入完整的损耗分析,提出一种新颖的简化损耗分析模型及其详细计算公式,并以采用型辅助网络和采用Y型辅助网络的两种变换器为对象,进行详细的损耗分析和对比。最后通过实验验证本文理论分析的正确性。该文对于深入研究全桥直流变换器具有一定的参考价值。展开更多
文摘在传统移相全桥变换器拓扑上加入由电容和电感组成的无源辅助网络,可以在宽输入电压和整个负载范围内实现原边开关管的零电压开关(zero voltage switching,ZVS)。通过精确的损耗计算,可以寻找降低损耗的方法,优化电路结构以进一步提高变换器的效率。针对加辅助网络的全桥变换器进行深入完整的损耗分析,提出一种新颖的简化损耗分析模型及其详细计算公式,并以采用型辅助网络和采用Y型辅助网络的两种变换器为对象,进行详细的损耗分析和对比。最后通过实验验证本文理论分析的正确性。该文对于深入研究全桥直流变换器具有一定的参考价值。