期刊文献+

Testing for Normality from the Parametric Seven-Number Summary 被引量:1

Testing for Normality from the Parametric Seven-Number Summary
下载PDF
导出
摘要 The objective of this study is to propose the Parametric Seven-Number Summary (PSNS) as a significance test for normality and to verify its accuracy and power in comparison with two well-known tests, such as Royston’s W test and D’Agostino-Belanger-D’Agostino K-squared test. An experiment with 384 conditions was simulated. The conditions were generated by crossing 24 sample sizes and 16 types of continuous distributions: one normal and 15 non-normal. The percentage of success in maintaining the null hypothesis of normality against normal samples and in rejecting the null hypothesis against non-normal samples (accuracy) was calculated. In addition, the type II error against normal samples and the statistical power against normal samples were computed. Comparisons of percentage and means were performed using Cochran’s Q-test, Friedman’s test, and repeated measures analysis of variance. With sample sizes of 150 or greater, high accuracy and mean power or type II error (≥0.70 and ≥0.80, respectively) were achieved. All three normality tests were similarly accurate;however, the PSNS-based test showed lower mean power than K-squared and W tests, especially against non-normal samples of symmetrical-platykurtic distributions, such as the uniform, semicircle, and arcsine distributions. It is concluded that the PSNS-based omnibus test is accurate and powerful for testing normality with samples of at least 150 observations. The objective of this study is to propose the Parametric Seven-Number Summary (PSNS) as a significance test for normality and to verify its accuracy and power in comparison with two well-known tests, such as Royston’s W test and D’Agostino-Belanger-D’Agostino K-squared test. An experiment with 384 conditions was simulated. The conditions were generated by crossing 24 sample sizes and 16 types of continuous distributions: one normal and 15 non-normal. The percentage of success in maintaining the null hypothesis of normality against normal samples and in rejecting the null hypothesis against non-normal samples (accuracy) was calculated. In addition, the type II error against normal samples and the statistical power against normal samples were computed. Comparisons of percentage and means were performed using Cochran’s Q-test, Friedman’s test, and repeated measures analysis of variance. With sample sizes of 150 or greater, high accuracy and mean power or type II error (≥0.70 and ≥0.80, respectively) were achieved. All three normality tests were similarly accurate;however, the PSNS-based test showed lower mean power than K-squared and W tests, especially against non-normal samples of symmetrical-platykurtic distributions, such as the uniform, semicircle, and arcsine distributions. It is concluded that the PSNS-based omnibus test is accurate and powerful for testing normality with samples of at least 150 observations.
作者 José Moral De La Rubia José Moral De La Rubia(School of Psychology, Universidad Autónoma de Nuevo León, Nuevo León, Mexico)
机构地区 School of Psychology
出处 《Open Journal of Statistics》 2022年第1期118-154,共37页 统计学期刊(英文)
关键词 Normality Tests Parametric Omnibus Test QUANTILES Accuracy POTENCY Normality Tests Parametric Omnibus Test Quantiles Accuracy Potency
  • 相关文献

参考文献2

二级参考文献2

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部