期刊文献+

多射击模式下防御效率分析与计算

Analysis and Calculation of Defense Efficiency in Multiple Shooting Mode
原文传递
导出
摘要 针对红方(防御方)防御蓝方(进攻方)目标的射击战斗过程,研究了多射击模式下红方射弹分配和防御效率计算方法。首先,在"射击—射击"策略下,基于给定的射弹数和目标数,给出了红方获得最大防御效率时射弹分配方法;其次,在"齐射—观察—齐射"策略下,考虑射击次数和齐射弹数等因素,给出了红方多次射击防御效率迭代递推生成方法;最后,通过实例分析对射弹分配和防御效率计算方法进行了验证,并对内含规律进行了讨论。 Considering the shooting process of the red( defensive side) shooting the blue( offensive side),a calculation method of interceptor allocation and Effectiveness of Defense( ED) in multishooting mode is proposed. Firstly,for shoot-shoot strategy,the interceptors' allocation method to gain maximum effectiveness of defense is proposed under given number of red interceptors and blue targets. Secondly,for salvo-look-salvo strategy,in consideration of the factors such as shooting times and salvo size,the iterative recursive generation method is given for multi shooting ED of the red. The simulation examples are carried out to verify the method of interceptor allocation and ED,and the inherent law is discussed.
出处 《装甲兵工程学院学报》 2016年第5期50-53,共4页 Journal of Academy of Armored Force Engineering
基金 全军军事类研究生课题
关键词 射击模式 齐射—观察—齐射 防御效率 生成函数 shooting mode salvo-look-salvo effectiveness of defense generating function
分类号 E91 [军事]
  • 相关文献

参考文献3

二级参考文献43

  • 1高尚,杨静宇.武器-目标分配问题的粒子群优化算法[J].系统工程与电子技术,2005,27(7):1250-1252. 被引量:55
  • 2丁铸,马大为,汤铭端,张学锋.基于禁忌退火粒子群算法的火力分配[J].系统仿真学报,2006,18(9):2480-2483. 被引量:26
  • 3姚坤,李菲菲,刘希玉.一种基于PSO和GA的混合算法[J].计算机工程与应用,2007,43(6):62-64. 被引量:18
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proc. of the IEEE International CoTz h'rence on Neural Networks, 1995:1942- 1948. 被引量:1
  • 5Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]// Proc. of the 6th Micro Machine and Human Science, 1995:39-43. 被引量:1
  • 6Khorshidian H, Javadian N, Zandieh M, et al. A genetic algorithm for JIT single machine scheduling with preemption and machine idle time [J ]. Expert Systems with Applications, 2011, 38 (7):7911-7918. 被引量:1
  • 7Shi X H, Liang Y C, Lee H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Information Processing Letters, 2005, 93 (5):255-261. 被引量:1
  • 8Kao Y, Zahara E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions[J]. Applied Soft Computing, 2008, 8:849 - 857. 被引量:1
  • 9Sha D Y, Hsu C Y. A hybrid particle swarm optimization for job shop scheduling problem[J]. Computers & Industrial Engineering, 2006, 51 (4):791-808. 被引量:1
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]//Proc, of the Congress on Evolutionary Computation, 1999 : 1951 - 1957. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部