摘要
本文根据相对论量子理论中自由Dirac粒子的自旋角动量并非运动常数的问题进行了探讨,考虑粒子的颤动运动对其自旋的影响,提出相对论粒子的颤动—自旋耦合算符,并证明该算符是一运动常数,在过渡到非相对论情况下,脱耦为普遍量子理论中的自旋算符,并对它的物理性质和代数性质进行了讨论。
In this paper, the discussions are given on the problem that the spin of a frec Dirac particle is not a conservation in relativistic guantum theory. In consideration of the influence of zitterbewegung on the spin of the particle, a zitterbewegung-spin coupling operator on relativistic Dirae particleis produced, and it is demonstrated to be a conservation. In nonrelativistic limiting case, it changes into a spin operator in ordinary quantum theory. Finally, its physical and algebraic properties are studied.
出处
《江西师范大学学报(自然科学版)》
CAS
1989年第3期5-10,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
关键词
相对论
粒子
颤动-自旋
耦合算符
zitterbewegung-spin coupling operator velocity operator
negative energy state