期刊文献+

利用改进ResNet和暂稳态时间序列的光伏阵列在线故障诊断方法

On-line fault diagnosis method of photovoltaic array using improved ResNet and transient steady-state time series
下载PDF
导出
摘要 针对光伏阵列输出的实时电压电流时序信号包含复杂时变特性及噪声从而影响故障诊断精度的问题,提出一种基于坐标注意力的浅层ResNet网络故障诊断模型.首先利用相对位置矩阵方法将3种一维暂稳态时序数据,包括加权总电流,以及光伏阵列时序电压和电流,转换为二维数据,以此生成红、绿、蓝三通道图像.然后,将图像输入到所提的基于与坐标注意力结合的残差网络模型中,提取其丰富的故障信息,有效地提升故障诊断精度.最后,通过仿真和实际的故障模拟实验获取故障样本数据,以训练和测试所提的网络模型,并与多种其他网络模型进行对比,并对仿真数据集进行可靠性验证.经实验分析证明,提出的故障检测与诊断方法在准确性和稳定性方面都有更佳的表现,根据仿真平台获得的数据集也有较高的可靠性. A shallow ResNet network fault diagnosis model based on coordinate attention is proposed to solve the problem that the real-time voltage and current timing signal of photovoltaic array contains complex time-varying characteristics and noise,which affects the fault diagnosis accuracy.Firstly,three one-dimensional transient steady-state timing data,including weighted total current and photovoltaic array timing voltage and current,are converted into two-dimensional data by using the relative position matrix method to generate red,green,and blue(RGB)three-channel images.Then,the images are input into the proposed residual network model based on the combination of coordinate attention,which can extract its rich fault information and effectively improve the fault diagnosis accuracy.Finally,fault sample data are obtained through simulated and actual fault simulation experiments to train and test the proposed network model,compare it with a variety of other network models,and verify the reliability of the simulation dataset.The experimental analysis proves that the fault detection and diagnosis method proposed in this paper has the better performance in terms of accuracy and stability,and the dataset obtained according to the simulation platform also has high reliability.
作者 江文开 陈志聪 吴丽君 林培杰 程树英 JIANG Wenkai;CHEN Zhicong;WU Lijun;LIN Peijie;CHENG Shuying(Institute of Micro-Nano Devices and Solar Cells,College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350108,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第4期482-489,共8页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(62271151) 福建省自然科学基金面上资助项目(2021J01580) 福建省科技厅引导性基金资助项目(2022H0008)。
关键词 光伏阵列 在线故障诊断 坐标注意力 残差网络 相对位置矩阵 photovoltaic array on-line fault diagnosis coordinate attention residual network relative position matrix

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部