期刊文献+

基于图像处理-纹理分析的HVDC GIL缺陷识别方法 被引量:4

Defect Recognition Method of HVDC GIL Based on Image Processing-texture Analysis
下载PDF
导出
摘要 不同类型的绝缘缺陷具有不同的故障演变规律而且对绝缘材料老化的影响规律不同,对绝缘缺陷类型进行模式识别来实施故障诊断,有助于高压直流气体绝缘输电线路的长期稳定运行。通过搭建一套220 kV的实验平台及制造4种包含不同位置尺寸的绝缘缺陷,使用逐步升压法成功测得180828个脉冲电流信号共540个样本点。通过提取每次局部放电(partial discharge,PD)的放电时刻和视在放电量,对每个样本点使用空间灰度相关法提取了432种PD特征;进而基于广义判别成分分析及其核化形式的改进监督型子空间投影技术,对4种缺陷类型可以进行全部成功识别,解决了相位分布模式在直流情况下无法使用的难题。 The fault evolution law will behave differently pertinent to different kinds of insulation defects,which also make different influences on the aging process of insulation materials.Thus,performing pattern recognition to identify the types of insulation defects so as to make fault diagnosis will be beneficial to long-term stable operation of high voltage direct current gas-insulated transmission line(HVDC GIL).By means of building a 220 k V experimental platform and manufacturing four kinds of defects,including multiple locations and sizes,180828 pulse current signals comprising 540samples,are successfully measured using stepwise voltage ramp-up method.By virtue of extracting the discharge time and apparent discharge quantity of each partial discharge(PD)signal,spatial gray level dependency matrix is utilized to obtain 432 kinds of PD features.Then all kinds of insulation defects can be distinguished based on generalized discriminant component analysis,a kind of improved supervised subspace projection technology,as well as its kernelization forms,thus solving the dilemma that phase-resolved partial discharge mode cannot be applied to DC situations.
作者 周瑞旭 高文胜 刘卫东 ZHOU Ruixu;GAO Wensheng;LIU Weidong(State Key Laboratory of Power System and Generation Equipment,Department of Electrical Engineering,Tsinghua University,Beijing 100084,China)
出处 《高电压技术》 EI CAS CSCD 北大核心 2022年第12期4719-4730,共12页 High Voltage Engineering
基金 国家重点基础研究发展计划(973计划)(2014CB239506-2)。
关键词 高压直流气体绝缘输电线路 故障诊断 模式识别 空间灰度相关法 广义判别成分分析 HVDC GIL fault diagnosis pattern recognition spatial gray level dependency matrix generalized discriminant component analysis
  • 相关文献

参考文献4

二级参考文献58

共引文献440

同被引文献37

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部