摘要
针对环境承载力评价指标体系构建中信息重复和干扰的问题,将相关分析与粗糙集Horafa属性约简算法应用于指标体系的优化,依据粗糙集属性重要度定权,利用灰色关联分析法对优化结果进行检验。结果表明,两者的结合对于指标体系构建非常关键。相关分析能够筛除线性相关指标,避免了指标信息冗余;粗糙集Horafa属性约简算法既能剔除干扰信息,又能对指标客观赋权。初始、筛选、优化3种指标体系评价结果趋势一致,承载力水平不断提高。
Correlation analysis and Horafa algorithm for attribute reduction of rough set are applied to optimize the index system to solve the problems of information redundancy and interference in the constitution of index system for environmental carrying capacity. Attribute importance of rough set is used to determine the index weight and grey relational analysis is used to inspect the optimized evaluation results. The results show that their combination is very important for the construction of index system. Correlation analysis can be used to eliminate the indicators with linear correlation, which avoids the redundancy of index information. Horafa algorithm for attribute reduction of rough set can be used to eliminate interference information and carry out objective index weight for index. The evaluation results of initialization, screening, optimization index systems are consistent, and the carrying capacity has been continuously improved.
作者
顾婷
GU Ting(Shanghai Surveying and Mapping Institute,Shanghai 200063,China)
出处
《测绘地理信息》
CSCD
2021年第3期114-117,共4页
Journal of Geomatics
基金
广西壮族自治区国土资源厅公开招标项目(GXZC2015-G3-0575-GTZB)。
关键词
环境承载力
指标优化
相关分析
粗糙集
environmental carrying capacity
index optimization
correlation analysis
rough set