摘要
农业航空静电喷雾技术结合了航空植保作业效率高和静电喷雾增加靶标沉积等优势,具有广泛的应用前景,但该技术在靶标背面增加沉积的优势并不明显。为此,构建了喷雾时间可控制、充电(接触式)电压可调整、喷雾高度可调节的室内航空静电喷雾试验台,并探究了以上3种因素对航空静电喷雾在水平靶标叶片背面、正面的雾滴沉积效果的影响。试验结果表明:(1)构建的航空静电喷雾系统能够同时实现水平叶片靶标背面和正面的良好沉积,在室内条件下水平叶片靶标背面与正面的雾滴沉积密度比(Back-Front Ratio,简称BFR)最高可达158.8%,但靶标背面的雾滴粒径相对正面更小;(2)增加喷雾时间起到了对雾滴数量的沉积累加作用,但对BFR没有显著影响;(3)在保证系统安全的前提下,更高的充电电压和较低的喷雾高度能够实现更高的BFR及更强的靶标背部沉积效果。本研究可为优化航空静电喷雾系统参数、改善静电喷雾效果提供参考。
Agricultural aviation electrostatic spraying technology combines the high operational efficiency advantages of aerial plant-protection and the improved deposition advantages of electrostatic spraying.It has a wide range of application prospects, but the current technology has no obvious advantage in increasing deposition on the back of the target. In this study, an indoor aerial electrostatic spraying test bench with adjustable spraying height, controllable spray time, and adjustable charging(contact) voltage was independently established, and the deposition effect of aerial electrostatic spraying on the front and back of horizontal target blades was investigated based on the above three factors. The test results show that:(1)The aerial electrostatic spraying system built in this study can achieve good deposition on the back and front of the horizontal target at the same time. Under indoor conditions, the back-front ratio(BFR) of the horizontal target’s back to the front can reach 158.8%, but the droplet size on the back of the target is smaller than the front;(2)Increasing the spraying time played a cumulative role in the number of droplets deposited, but had no significant effect on BFR;(3)Under the premise of ensuring system safety, higher charging voltage and lower spraying height can achieve higher BFR and better target back deposition effect. This study provides a reference for optimizing the parameters of aerial electrostatic spraying system and improving the effect of electrostatic spraying.
作者
赵德楠
兰玉彬
沈为国
Zhao Denan;Lan Yubin;Shen Weiguo(School of Agricultural Engineering and Food Science,Shandong University of Technology,Zibo 255000,China;Shandong University of Technology Sub-center of National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology(NPAAC),Zibo 255000,China;Shandong Provincial Engineering Technology Research Center for Agricultural Aviation Intelligent Equipment,Zibo 255000,China;Taicang Jingang Plant Protection Equipment Technology Co.Ltd.,Taicang 215400,China)
出处
《农机化研究》
北大核心
2021年第8期204-207,213,共5页
Journal of Agricultural Mechanization Research
基金
山东省引进顶尖人才“一事一议”专项经费项目(2018-2021)
中央引导地方科技发展专项(2017-2019)
淄博市科技发展计划项目(2018kj010073)
山东省旱作智能农机装备协同创新中心项目(2017-2020)。
关键词
航空喷雾
静电喷雾
静电吸附
叶背沉积
aerial spraying
electrostatic spraying
electrostatic adsorption
leaf back deposition