摘要
温度梯度和表面电导作为影响盆式绝缘子表面电荷积聚和消散的重要因素却常被忽略。基于因GIL不同筒壁温度与中心电极构成的不同温度梯度而形成的表面电导率梯度和固体侧体积电导率梯度进行有限元仿真,研究温度梯度和电压幅值对绝缘子表面电荷积聚和消散的影响及GIL实际运行过程中的表面电荷积聚和消散主导机制及最适筒壁温度。研究结果表明,高压直流下盆式绝缘子表面电荷积聚和消散的主导机制均为体电导主导,表面电导的贡献比体电导小2个数量级,气体电导的贡献可忽略不计,绝缘子表面电荷积聚和消散均符合双指数函数模型,上表面电荷聚散相比下表面对温度梯度的敏感性更高,提高筒壁温度可有效削弱绝缘子表面沿面电场畸变、抑制表面电荷积聚并促进表面电荷消散,GIL最适筒壁温度在318K附近。
The temperature gradient and surface conductance are often neglected as the important factors that affect the surface charge accumulation and dissipation.Based on the finite element simulation of the surface conductivity gradient and solid side volume conductivity gradient formed by different cylinder wall temperature and central electrode temperature gradient of GIL,the influence of temperature gradient and voltage amplitude on insulator surface charge accumulation and dissipation,the dominant mechanism of surface charge accumulation and dissipation in the actual operation of GIL and the optimal cylinder wall temperature are studied.The results show that the main mechanism of surface charge accumulation and dissipation is bulk conductance,the contribution of surface conductance is two orders of magnitude smaller than bulk conductance,and the contribution of gas conductance can be neglected.The surface charge accumulation and dissipation of insulator conform to the double exponential function model,and the upper surface charge accumulation and dissipation have higher sensitivity of temperature gradient than that of the lower surface,increasing the wall temperature can effectively weaken the electric field distortion along the insulator surface,inhibit the surface charge accumulation and promote the surface charge dissipation.The optimum wall temperature of GIL is around 318 K.
作者
尚帅川
张周胜
王亚
SHANG Shuai-chuan;ZHANG Zhou-sheng;WANG Ya(School of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处
《水电能源科学》
北大核心
2021年第1期179-182,共4页
Water Resources and Power
基金
国家自然科学基金项目(51677113)。
关键词
表面电荷积聚
表面电荷消散
温度梯度
主导机制
沿面电场
surface charge accumulation
surface charge dissipation
temperature gradient
dominant mechanism
surface electric field