摘要
借助于Dcpo上的Scott拓扑,引进Scott吸收Dcpo的概念,并证明了函数空间上Scott拓扑与Isbell拓扑一致的必要条件是该函数空间的值域Dcpo是Scott吸收的。结果表明,Scott吸收性是Lawson-Mislove问题的一个必要性刻画。
Based on the Scott Topology on Dcpo,the concept of Scott absorbed Dcpo is introduced.And it is proved that if the Scott Topology and the Isbell Topology on a functional space are coincident,then the valued Dcpo in the functional space is Scott absorbed.This result gives a necessary condition for Lawson-Mislove Problem.
作者
孙涛
邹志伟
Sun Tao;Zou Zhiwei(College of Mathematics and Physics,Hunan University of Arts and Science,Changde 415000,China;College of Mathematics and Physics,University of South China,Hengyan 421001,China)
出处
《湖南文理学院学报(自然科学版)》
CAS
2021年第1期1-4,共4页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
国家自然科学基金项目(11901194&11801264)
湖南省自然科学基金(2019JJ50406)
湖南省高校青年骨干教师资助项目。