期刊文献+

基于强化学习的快速探索随机树特殊环境中路径重规划算法 被引量:24

Rapidly-exploring random tree algorithm for path re-planning based on reinforcement learning under the peculiar environment
下载PDF
导出
摘要 针对移动机器人在未知的特殊环境(如U型、狭窄且不规则通道等)下路径规划效率低问题,本文提出一种强化学习(RL)驱动快速探索随机树(RRT)的局部路径重规划方法(RL-RRT).该方法利用Sarsa(λ)优化RRT的随机树扩展过程,既保持未知环境中RRT的随机探索性,又利用Sarsa(λ)缩减无效区域的探索代价.具体来说,在满足移动机器人运动学模型约束的同时,通过设定扩展节点的回报函数、目标距离函数和平滑度目标函数,缩减无效节点,加速探索过程,从而达到路径规划多目标决策优化的目标.仿真实验中,将本方法用于多种未知的特殊环境,实验结果显示出RL-RRT算法的可行性、有效性及其性能优势. In this paper,a local path re-planning rapidly-exploring random tree(RRT)method(RL-RRT)driven by reinforcement learning(RL)is proposed,aiming at the low efficiency of path planning for the mobile robot in the unknown and peculiar environments such as U-shaped,narrow and irregular channels.The RRT random tree expansion process is optimized by Sarsa(λ)in this method,which not only maintains the random exploratory nature of RRT in the unknown environment,but also uses Sarsa(λ)to reduce the exploration cost of the invalid region.Specifically,RL-RRT can reduce invalid nodes and accelerate the exploration process by setting the return function,target distance function and smoothness objective function of extended nodes,while satisfying the constraints of mobile robot kinematics model,so as to achieve the goal of multi-objective decision-making optimization of path planning.In the simulation experiment,RL-RRT is applied to many unknown and particular environments.The experimental results show the feasibility,effectiveness and performance advantages of RL-RRT method.
作者 邹启杰 刘世慧 张跃 侯英鹂 ZOU Qi-jie;LIU Shi-hui;ZHANG Yue;HOU Ying-li(Information Engineering Faculty,Dalian University,Dalian Liaoning 116000,China;National Institute of Innovation,National Defense Science and Technology Research Center for Unmanned Systems,Changsha Hunan 410000,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第8期1737-1748,共12页 Control Theory & Applications
基金 国家自然科学基金面上项目(61673084) 辽宁省自然基金项目(2019-ZD-0578)资助.
关键词 快速探索随机树 Sarsa(λ) 局部路径重规划 移动机器人 特殊环境 rapidly-exploring random tree(RRT) Sarsa(λ) local path re-planning mobile robots peculiar environment
  • 相关文献

参考文献5

二级参考文献51

  • 1刘磊,向平,王永骥,俞辉.非完整约束下的轮式移动机器人轨迹跟踪[J].清华大学学报(自然科学版),2007,47(z2):1884-1889. 被引量:20
  • 2覃柯,孙茂相,孙昌志.动态环境下基于改进人工势场法的机器人运动规划[J].沈阳工业大学学报,2004,26(5):568-571. 被引量:19
  • 3朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:50
  • 4Arkin R C. Behavior-based robotics[M]. 1st ed. Cambridge, USA: MIT Press, 1998: 1-3. 被引量:1
  • 5Lozano-Perez T. Spatial planning: A configuration space approach[J]. IEEE Transactions on Computers, 1983, 32(2): 108- 120. 被引量:1
  • 6LaValle S M. Rapidly-exploring random trees: A new tool for path planning[R]. Iowa, USA: Computer Science Department, Iowa State University, 1998. 被引量:1
  • 7LaValle S M, Kuffner J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5): 378-400. 被引量:1
  • 8Kuffner J J, LaValle S M. RRT-connect: An efficient approach to single-query path planning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2000: 995-1001. 被引量:1
  • 9Rodriguez S, Tang X Y, Lien J M. An obstacle-based rapidlyexploring random tree[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 895-900. 被引量:1
  • 10Szadeczky-Kardoss E, Kiss B. Extension of the rapidly exploring random tree algorithm with key configurations for nonholonomic motion planning[C]//IEEE International Conference on Mechatronics. Piscataway, NJ, USA: IEEE, 2006: 363-368. 被引量:1

共引文献154

同被引文献231

引证文献24

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部