摘要
为提高炮管管线阴阳线硬度及抗摩擦磨损能力,对炮管管线阴线和阳线进行激光淬火试验研究。建立连续半导体激光加热38CrNi3MoV温度场的有限元预测模型,仿真分析激光参数对炮管管线温度场的影响规律。结合温度场仿真结果,对炮管管线开展激光淬火试验研究,探究激光功率、激光光斑直径、扫描速度等工艺参数对淬硬层硬度以及深度的影响规律。结果表明:激光淬火后平均硬度由400HV提高到710HV,增加43.66%;阳线、阴线硬化层深度分别达到1.22mm和0.61mm。淬火后阳线表面粗糙度Ra由0.548μm增加至0.700μm,阴线表面粗糙度Ra由4.424μm降低至3.804μm,均在允许的变化范围之内,满足使用要求。通过光学显微镜对淬火后阴阳线组织转变进行观察分析,探究激光淬火后组织转变规律。
In order to improve the hardness and anti-friction wear performance of the barrel,the finite element predictive model of the temperature field of the continuous semiconductor laser heating pipe line was established,and the effect of laser parameters on the temperature field of the pipe line was simulated.Combined with the simulation results,the mathematical relationship between the depth of the quenching layer and the peak temperature of the temperature field was calculated.The laser quenching test was carried out and the effect of laser power,laser diameter and laser scanning speed on the hardness and depth of the hardened layer was investigated.The microstructure change after quenching was observed by using optical microscope.The results showed that the average hardness after laser quenching was increased from 400HV to 710HV,which is increased by 43.66%,and the depth of the hard line of yin and yang lines was 1.22mm and 0.61mm,respectively.After quenching,the surface roughness of the yang line material increased from 0.548μm to 0.7005μm,and the surface roughness of the yin line material decreased from 4.424μm to 3.804μm,respectively,which is meeting the requirements of use.The microstructure transformation of the yin and yang lines after quenching was observed and analyzed using optical microscope,and the transformation rules after laser quenching was explored.
作者
孔宪俊
王明海
王奔
郑耀辉
王扬
杨立军
KONG Xianjun;WANG Minghai;WANG Ben;ZHENG Yaohui;WANG Yang;YANG Lijun(School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136,China;School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处
《航空制造技术》
2019年第23期52-58,共7页
Aeronautical Manufacturing Technology
基金
科技部国家重点基础研究发展计划(2018YFB1107603)
辽宁省博士启动基金(20180540039)
校启动基金(18YB17)
先进航空发动机结构件数字化加工技术辽宁省科技创新团队项目(LT 201608)
沈阳市先进航空难加工结构数字化制造技术重点实验室项目(1801713)