期刊文献+

基于统计分析的井下机电事故发生频率预测模型 被引量:2

Frequency prediction model of underground mechanical and electrical accidents on the basis of statistical analysis
下载PDF
导出
摘要 井下机电事故发生的频率受到很多因素的影响。为分析并建立多因素影响预测井下机电事故发生的概率,收集了我国21个矿区的大量统计数据,对机电事故发生情况进行统计分析,得到影响机电事故率的因素包括人员素质、井下环境、机电检修频率和管理水平。分析过程中采用多元统计分析的科学方法,并用该方法建立了机电事故发生率的预测模型,该模型的预测精度和结果的可信度较高,符合工程生产中的应用。 Frequency of electromechanical accidents in underground mine was affected by many factors. In order to analyze and establish many factors influence to predict mine electromechanical accident probability, a large number of statistical data of 21 mining area in our country were collected to analyze occurrence of electromechanical accident statistically, including factors of personnel quality, underground environment, electrical maintenance frequency and management level. Scientific method of multivariate statistical analysis was used to establish predicting model of incidence of electromechanical accident, which had high reliability of prediction accuracy and results, comforting to application of engineering production.
作者 赵常峰
出处 《煤炭与化工》 CAS 2017年第2期151-153,共3页 Coal and Chemical Industry
基金 国家自然科学基金(51274116)
关键词 机电事故率 机电事故 多元统计分析 机电事故影响因素 mechanical and electrical accident rate electromechanical accident multivariate statistical analysis influencing factors of mechanical and electrical accident
  • 相关文献

参考文献20

二级参考文献35

共引文献209

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部