期刊文献+

模糊非基因信息记忆的双克隆选择算法 被引量:9

Double Clonal Selection Algorithm Based on Fuzzy Non-genetic Information Memory
下载PDF
导出
摘要 该文针对传统智能优化算法中虚拟碰撞而导致的全局搜索效率降低的问题,提出一种模糊非基因信息记忆的双克隆选择算法。该算法设计基于模糊非基因信息的搜索机制与克隆选择原理相结合,对抗体进化中的非基因信息进行采集、模糊化并保存到记忆库,运用这些信息引导该抗体后续的双克隆搜索过程,从而减少非优区域的虚拟碰撞,提高全局搜索效率。通过标准测试函数的仿真试验并与其他算法比较,新算法表现出更快的全局收敛速度和更高的全局收敛精度。 To provide a better solution for search efficiency reduction problem caused by pseudo collision in the traditional intelligent optimization algorithms, this paper proposes a double clonal selection algorithm based on fuzzy non-genetic information memory. By combing with clonal selection theory, the search mechanism based on fuzzy non-genetic information memory is well performed. The non-genetic information in antibody evolution is collected, fuzzified and stored in the memory. Using this information to guide the subsequent double cloning search process, it can reduce the pseudo collision in non-optimal area, thus the global search efficiency is improved greatly. Extensive simulations show that the proposed algorithm has fast global convergence rate and high global convergence accuracy. Comparative results further demonstrate that it performs better than existing algorithms.
作者 宋丹 樊晓平 文中华 黄大足 屈喜龙 SONG Dan FAN Xiaoping WEN Zhonghua HUANG Dazu QU Xilong(College of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China School of Information Science and Engineering, Central South University, Changsha 410083, China Department of Information Management, Hunan University of Finance and Economics, Changsha 410205, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第2期255-262,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61272295 61673164 61402540) 湖南省自然科学基金(2016JJ6031 2016JJ2040) 湖南省教育厅科学研究项目(16A049 13A010)~~
关键词 克隆选择 智能记忆 模糊信息 数值优化 Clonal selection Intelligent memory Fuzzy information Numerical optimization
  • 相关文献

参考文献5

二级参考文献35

  • 1杜海峰,刘若辰,焦李成,王孙安.求解0-1背包问题的人工免疫抗体修正克隆算法[J].控制理论与应用,2005,22(3):348-352. 被引量:16
  • 2高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 3王东风,韩璞.基于粒子群优化的混沌系统比例-积分-微分控制[J].物理学报,2006,55(4):1644-1650. 被引量:11
  • 4DASGUPTA D, FORREST S. Artificial immune systems in industrial applications[C]//Proc of the 2nd lnt Conf on Intelligent Processing and Manufacturing of Materials (IPMM '99). Piscataway, NJ, USA: IEEE Press, 1999, 1:257 - 267. 被引量:1
  • 5GASPER A, COLLARD P. From GAs to artificial immune systems: improving adaptation in time dependent optimization[C]//Proc of the Congress on Evolutionary Computation (CEC 99). Piscataway, NJ, USA:IEEE Press, 1999, 3 : 1859 - 1866. 被引量:1
  • 6De CASTRO L N, VON ZUBEN F J. Artificial Immune System[J/OL]. part 1- Basic Theory and Application. http://www.dca.fee.unicamp.br/^-Inunes/immunes.html . 被引量:1
  • 7De CASTRO L N, VON ZUBEN F J. An evolutionary immune network for data clustering[C]//Proc of the Sixth Brazilian Symposium on Neural Networks. Los Alamitos, CA, USA: IEEE Computer Society, 2000:84 - 89. 被引量:1
  • 8KIM J W, BENTLEY P J. Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator[C]//Proc of the 2001 Congress on Evolutionary Computation. Piscataway, N J, USA: IEEE Press, 2001, 2: 1244- 1252. 被引量:1
  • 9BaCK T, SCHWEFEL H P. An overview of evolutionary algorithms for parameter optimization[J]. Evol Comput, 1993, 1(1): 1 - 23. 被引量:1
  • 10DU HE LIU R C, JIAO L C. L Immunity clonal strategies[C]//Proc of the 5th Int Conf on Computation Intelligence and Multimedia Application (ICCIMA'03). Xi'an, China:IEEE Computer Society Publisher, 2003: 290-295 被引量:1

共引文献59

同被引文献69

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部