期刊文献+

Flow-induced voltage generation in graphene network

Flow-induced voltage generation in graphene network
原文传递
导出
摘要 We report a voltage generator based on a graphene network (GN). In response to the movement of a droplet of ionic solution over a GN strip, a voltage of several hundred millivolts is observed under ambient conditions. In the voltage-generation process, the unique structure of GN plays an important role in improving the rate of electron transfer. Given their excellent mechanical properties, GNs may find applications for harvesting vibrational energy in various places such as raincoats, umbrellas, windows, and other surfaces that are exposed to rain. 我们基于一个 graphene 网络(GN ) 报导一个电压发电机。响应在 GN 脱衣上的离子的答案的微滴的运动,几百毫伏特的电压在周围的条件下面被观察。在电压产生过程, GN 的唯一的结构在改进电子转移的率起一个重要作用。给他们的优秀机械性质, GN 可以为在象被暴露下雨的雨衣,伞,窗口,和另外的表面那样的各种各样的地方收获震动的精力发现应用。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2467-2473,共7页 纳米研究(英文版)
基金 This work was supported by Beijing Science and Technology Program (No. D141100000514001) and the National Natural Science Foundation of China (No. 51372133).
关键词 GRAPHENE flow ionic solution energy-harvesting 电压发生器 石墨 网络 Windows 电子传递速率 室温条件 离子溶液 产生过程
  • 相关文献

参考文献30

  • 1Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534. 被引量:1
  • 2Hong, W. J.; Bai, H.; Xu, Y. X.; Yao, Z. Y.; Gu, Z. Z.; Shi, G. Q. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C 2010, 114, 1822-1826. 被引量:1
  • 3Choi, B. G.; Park, H. S.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S. Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 2010, 4, 2910-2918. 被引量:1
  • 4Li, X.; Zhang, R. J.; u, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S.; et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870. 被引量:1
  • 5Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. . Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650. 被引量:1
  • 6Boland, C. S.; Khan, U.; Backes, C.; O'Neill, A.; McCauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A. B.; et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene rubber composites. ACS Nano 2014, 8, 8819-8830. 被引量:1
  • 7Kang, C. G.; Lee, S. K.; Yoo, T. J.; Park, W.; Jung, U.; Ahn, J.; Lee, B. H. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene. Appl. Phys. Lett. 2014, 104, 161902. 被引量:1
  • 8Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579. 被引量:1
  • 9Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater 2011, 23, 5419-5424. 被引量:1
  • 10Urich, A.; Unterrainer, K.; Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 2011, 11, 2804-2808. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部