期刊文献+

基于类属属性约简的多标记学习 被引量:7

Multi-label learning with label-specific feature reduction
下载PDF
导出
摘要 在多标记学习中,由于不同的标记可能会带有自身的一些特性,所以目前已经出现了基于标记类属属性的多标记学习算法LIFT。然而,类属属性的构建可能会增加属性向量的维度,致使属性空间存在冗余信息。为此,借助模糊粗糙集提出了一种能够进行类属属性约简的多标记学习算法FRS-LIFT,其包含4个步骤:类属属性构建、属性维度约简、分类模型训练和未知样本预测。在5个多标记数据集上的实验结果表明,该算法与LIFT算法相比,不仅能够降低类属属性维数,而且在5种多标记评价指标上均具有较好的实验效果。 In multi-label learning, since different labels may have their own characteristics, multi-label learning approach with label-specific features named LIFT has been proposed. However, the construction of label-specific features may increase the dimension of feature vector, which brings some redundant information in feature space. To solve this problem, a multi- label learning approach named FRS-LIFT was presented, which can implement label-specific feature reduction by fuzzy rough set. FRS-LIFT contains four steps: construction of label-specific features, reduction of feature dimensionality, training of classification models and prediction of unknown samples. The experimental results on 5 multi-label datasets show that, compared with LIFT, the proposed method can not only reduce the dimension of label-specific features, but also achieve satisfactory performances in 5 evaluation metrics.
出处 《计算机应用》 CSCD 北大核心 2015年第11期3218-3221,3226,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61471182 61100116 61305058) 江苏省自然科学基金资助项目(BK2012700 BK20130471) 中国博士后科学基金资助项目(2014M550293)
关键词 属性约简 模糊粗糙集 类属属性 多标记学习 feature reduction fuzzy rough set label-specific feature muhi-label learning
  • 相关文献

参考文献19

  • 1BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771. 被引量:1
  • 2CHANG E, GOH K, SYCHAY G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38. 被引量:1
  • 3CHOU K C, SHEN H. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites[J]. Journal of Proteome Research, 2007, 6(5): 1728-1734. 被引量:1
  • 4GLORY E, MURPHY R F. Automated subcellular location determination and high-throughput microscopy[J]. Developmental Cell, 2007, 12(1): 7-16. 被引量:1
  • 5ZHANG M, ZHOU Z. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. 被引量:1
  • 6TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 12-16. 被引量:1
  • 7SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2): 135-168. 被引量:1
  • 8TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-labelsets for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089. 被引量:1
  • 9ZHANG M, ZHOU Z. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. 被引量:1
  • 10ZHANG M, PENA J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179(19): 3218-3229. 被引量:1

同被引文献36

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部